AREC/ECON 540: Natural Resource Economics Department of Agricultural and Resource Economics Colorado State University MWF, 11:00-11:50, Eddy 119 Spring, 2016

Course Syllabus

Dale Manning B304 Clark 970-491-5706 (office) <u>Dale.manning@colostate.edu</u> OH: Mon and Wed: 1-2 pm, or any time by appointment Final Exam: take-home, due by 10 am Monday 5/12/2016

Course Description

This course is a second-year masters-level class that will make use of micro-economic theory and mathematical modeling tools to develop a rigorous understanding of the connection between human economic behavior and the natural environment. We will use mathematical techniques, including optimization tools, to examine problems related to pollution, environmental valuation, climate change, and the use of scarce natural resources over time. Concepts and mathematical tools introduced in AREC 540 will be further developed in AREC 740 (resource econ) and AREC 741 (environmental econ).

Course Objectives

My goal is to expose students to the major environmental and natural resource economics models while emphasizing the concepts and intuition of the models. Students should be able to extend these basic models to a wide variety of topics that we will not have time to cover in this class. Also, applying economic theory in the contexts that we see in class should provide practice that will help in developing ideas for a master's thesis.

Prerequisites

According to the website, prerequisites are AREC/ECON 340 (intro to natural resource economics) and math 141 (calculus). I will assume everyone has taken at least intermediate microeconomics (AREC/ECON 306) and is comfortable with differential calculus and the basics of static optimization.

Recommended Texts and Readings

For this class, I will use the Perman et al 4th edition textbook:

Perman, Roger, Yue Ma, Michael Common, David Maddison, and James McGilvray. *Natural Resource and Environmental Economics*. Prentice Hall; 4 edition (June 23, 2012)

This textbook provides a foundation but most of the reading in the class will come from journal articles posted online. The relevant references are listed in the topics below, using the same name as the online file.

Grading

Grades will come from a mid-term (15%), a final (20%), homework assignments (25%), a paper proposal (rough draft (10%) and final (10%), including presentation (5%)), and participation (5%). Finally, each student will lead a discussion of a paper that we cover in class (10%). The mid-term will be in class and the final, a take-home, will be due the morning of the scheduled exam day. There will be 5 homework assignments and I will provide approximately 2 weeks per homework. You can collaborate on homework and turn in one problem set per 3 people but exams must be done entirely independently. I encourage you to come to me for help on homework as well. I will not accept late work.

I will give grades based on a percentage score but use a curve to ensure that the average grade is approximately a B+.

Торіс	Readings (in addition to	Important Dates	Perman
	Perman et al.)		Chapter(s)
I. Course Introduction			
Course overview			
Math review (production		HW1 Due 1/29	
example)			
Discounting			
2. Environmental Economics			
Introduction	Fullerton and Stavins 1998		1-3
	Oates 2006		
Externalities			
Public goods		HW2 due 2/12	
Policies to correct market	Coase 1960	No class on 2/26	5-7
failures	Goulder and Parry 2008		
	Gillingham et al 2013		
	Schmalensee and Stavins 2013		
	Hornbeck 2010		
General equilibrium			4,8
considerations			
Benefit-cost analysis			11
Environmental Valuation:	Carson 2000	HW3 due 3/4	12
revealed and stated	Muehlenbachs et al 2015		
preferences			
Environmental economics and			10
trade			
Climate change economics	Goulder and Pizer 2006	Midterm Exam	9

Class Topic Outline (subject to change)

	Weitzman 1974	(in class) 3/11	
3. Resource Economics		Spring Break: No	
		Class 3/14, 3/16,	
		3/18	
Land: rents, scarcity, and land	Mendelsohn et al 1994		
use			
Tragedy of the Commons: and	Hardin 1968	Proposal rough	
institutions to correct	Homans and Wilen 1997	draft due 3/25	
Forestry: from maximizing	Hartwick	4/1—no class	18
biomass to maximizing net	McDermott 2015		
value			
Nonrenewable Resources:	Hotelling 1931	HW4 due 4/6	15
sustainability and the optimal	Sinn Green Paradox		
use over time	Tierney Betting on the Planet		
Renewable Resources—The	Gordon 1954		17
Fishery: Maximum economic	Bromley 2015		
yield			
Population models			
Development and the	Ferraro et al 2012		
environment: ecosystem			
services			
Development and the	Samuelson 1974	HW 5 due 4/25	
environment: resource	Ostrom 2002		
management			
Optimal Control Overview			
Student Presentations		May 2, 4, and 6:	
		present (and	
		hand in) thesis	
		proposal	
Final Exam		Take-home, due	
		May 12 th by	
		10am	