Sorghum Hybrid Performance Trials in Eastern Colorado, 2010
K. J. Larson, Superintendent/Research Scientist II, Plainsman Research Center
J. J. Johnson, Extension Crop Specialist, Dept. of Soil and Crop Sciences
D. L. Thompson, Technician III, Plainsman Research Center

Funded by the National Sorghum Producers, Sorghum Checkoff Program and the Colorado Agricultural Experiment Station,
Crop Management and Sorghum Improvement, Project No. COL00654

- **Mention of a trademark or proprietary product does not constitute endorsement by the Colorado Agricultural Experiment Station.**

Colorado State University is an equal opportunity/affirmative action institution and complies with all Federal and Colorado State laws, regulations, and executive orders regarding affirmative action requirements in all programs. The Office of Equal Opportunity is located in 101 Student Services. In order to assist Colorado State University in meeting its affirmative action responsibilities, ethnic minorities, women, and other protected class members are encouraged to apply and to so identify themselves.
SORGHUM HYBRID PERFORMANCE TRIALS IN COLORADO, 2010

<table>
<thead>
<tr>
<th>Introduction:</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed Companies that Participated in Trials</td>
<td>2</td>
</tr>
<tr>
<td>Experimental Methods and Evaluations</td>
<td>3</td>
</tr>
<tr>
<td>Statistical Method</td>
<td>4</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>4</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
</tbody>
</table>

Dryland Grain Sorghum Performance Trial at Akron	6
Dryland Grain Sorghum Performance Trial at Brandon	9
Dryland Grain Sorghum Hybrid Performance Trial at Walsh	13
The 2010 Colorado grain sorghum crop was estimated at 5.60 million bushels, 17 percent below the 2009 sorghum crop of 6.75 million bushels. For Colorado, the 5.60 million bushels is the fourth highest in 10 years. The decrease in sorghum production this year was primarily due to a 5 bu/a reduction in per acre yields compared to last year, 40 bu/a for 2010 and 45 bu/a for 2009. Nonetheless, the 40 bu/a is the third highest per acre yield in the last 10 years. The harvested acreage in 2010 was 140,000 acres, which is 10,000 acres less than last year. Sorghum silage statistics are not published during the current year; however, Colorado sorghum silage statistics are available for last year. In 2009, 98,00 tons of sorghum silage was produced. The average yield was 14 tons/a from 7,000 harvested acres. (National Agricultural Statistics Service, Colorado Field Office, 2010).

This publication is a progress report of the sorghum hybrid performance trials conducted by the Department of Soil and Crop Sciences at Colorado State University, Colorado Agricultural Experiment Station, and Colorado State University Extension. The sorghum trials were conducted at three sites in eastern Colorado: Akron, Brandon, and Walsh. This year, all three sites were dryland.

Tests are partially funded by entry fees paid by commercial firms. Commercial seed representatives interested in entering sorghum hybrids in any of the trials should contact Jerry Johnson, Dept. of Soil and Crop Sciences, C12 Plant Science, Fort Collins, Colorado 80523, phone (970) 491-1454, email Jerry.Johnson@colostate.edu; or Kevin Larson, Plainsman Research Center, Box 477, Walsh, Colorado 81090, phone (719) 324-5643, email Kevin.Larson@colostate.edu for further details. Names and addresses of firms submitting entries in 2010 are shown in Table 1. Each firm selected entries for testing and furnished seed for the trials. AES researchers selected an open-pedigree hybrid as a standard of comparison.

Summary tables for weather data (CoAgMet and NOAA, 2010), soil analysis, fertilization (Soil, Plant and Water Testing Laboratory, Colorado State University), and available soil water graphs derived from gypsum block readings are provided for each trial location. Other information, where available, was included: site description, emergence date, irrigation, pest control, field history, and pertinent comments.
Table 1.--Entrants in the 2010 Colorado Sorghum Performance Trials.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Entered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERC</td>
<td>AERC Inc., 34, Colonnade Road, Suite 200, Ottawa, ON K2E 7J6 Canada</td>
</tr>
<tr>
<td>ASGROW</td>
<td>Monsanto, 7159 N. 247 W., P.O. Box 7, Mt. Hope, KS 67108</td>
</tr>
<tr>
<td>DEKALB</td>
<td>Monsanto, 7159 N. 247 W., P.O. Box 7, Mt. Hope, KS 67108</td>
</tr>
<tr>
<td>MYCOGEN</td>
<td>Mycogen Seeds, 9330 Zionville Road, Indianapolis, IN 46268</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>Sorghum Partners, Inc., P.O. Box 189, New Deal, TX 79350</td>
</tr>
<tr>
<td>TRIUMPH</td>
<td>Triumph Seed Co., Inc., P.O. Box 1050, Hwy. 62 Bypass, Ralls, TX 79357</td>
</tr>
</tbody>
</table>

AES researchers entered the following as a check: grain sorghum, TXms399 X TXR2737 (399 X 2737).
Growing Degree Days for sorghum were calculated from planting through first freeze using a maximum of 111°F and a minimum of 50°F for threshold temperatures (Peacock and Heinrich, 1984). They are calculated by averaging daily high and low temperatures and subtracting the base temperature of 50°F from the average. When daily temperatures are less than 50°F, 50°F is used, when temperatures are above 111°F a maximum temperature of 111°F is used:

\[
\frac{(\text{Daily Minimum Temp.} + \text{Daily Maximum Temp.})}{2} - 50\degree\text{F}
\]

Experimental Methods and Evaluations

Trials were planted with a four-row cone planter and harvested with a modified, self-propelled John Deere 4420 combine equipped with a four-row row-crop head to enhance harvest of lodged tillers. Sorghum forage was cut and chopped with a single row John Deere 8 silage cutter.

Days to Emergence. Seedling emergence was determined as the number of days after planting until approximately half of the seedlings become visible down a planted row.

50% Bloom. Number of days after planting until half of the main heads had pollinating florets. Number of days to half bloom provides a good measure of relative maturity between hybrids.

50% Maturity. Number of days after planting until half of the kernels in half of the main heads reached physiological maturity, i.e., the black layer becomes visible at the base of the kernel.

Plant Height. Plant height was measured in inches from the soil to the tip of the main head.

Lodging. The percentage of tillers with broken basal stems or broken peduncles or were leaning more than a 45 degree angle were considered lodged. Since the combine was equipped with a row crop head, most of the leaning tillers were harvested.

Harvest Density. Plant population in plants per acre was counted prior to harvest.

Test Weight. Test weight was determined using a hand-held bushel weight tester. A low test weight indicates that a hybrid did not fully mature prior to the first freeze or that it suffered environmental stress, such as a water deficiency.

Grain Yield. The grain yield in bushels per acre was corrected to 14 percent moisture content.
Yield as a % of Test Average. Yield as a percentage of test average provides a comparison between yields within a trial and allows easy comparisons among years, irrespective of annual growing conditions.

Forage Dry Matter Analysis. Whole plant samples were taken at boot for each hybrid and sent to Ward Laboratories, Inc., Kearney, Nebraska for forage feed quality using NIR analysis.

Forage Yield. Forage yield in tons per acre was adjusted to 70% moisture content. A representative sample of fresh silage was oven-dried at 167°F (75°C) until there was no more weight loss, and then yields were adjusted to 70% moisture content.

Stem Sugar. The sugar content, expressed as a percent, in the stem of forage sorghums at harvest was measured with a hand refractometer.

Available Soil Water

Available soil water was measured by placing gypsum blocks at 6, 18, 30, and 42 inches below the soil surface. Electrical resistance readings were made weekly. Resistance readings vary with the amount of soil water present. Using resistance readings, available soil water was determined by extrapolating from soil water depletion curves for each particular soil.

Statistical Method

Trials were planted in a randomized complete block design with four replications. No less than three replications were harvested. Analysis of variance was applied to the results and the least significant difference (LSD) was computed at alpha = 0.20 for all trials, except the Akron trial where alpha = 0.30 and 0.005 were used. Analysis of variance and regression were performed with CoStat Statistical Software a product of Cohort Software, Berkeley, California.

Acknowledgements

We are sincerely grateful to the National Sorghum Producers for providing funding through the Sorghum Checkoff Program to support these performance trials, and to Burl Scherler, the grower-cooperator for the Brandon trial for his assistance.
References

NOAA, May-October, 2010. Climatological data, Colorado. vol. 115, no.5-10. NOAA, Dept. of Commerce, NWS, NESDIS, NCDC.

Dryland Grain Sorghum Hybrid Performance Trial at Akron, 2010

COOPERATORS: USDA-ARS, Central Great Plains Research Station, Akron, Colorado, and Jerry Johnson, Extension Crop Specialist, Colorado State University.

PURPOSE: To identify high yielding hybrids under dryland conditions with 2900 sorghum heat units in a Silty Loam soil.

HARVEST PLOT SIZE: Two 30" rows, 30' long. REPLICATIONS: Four.
PLANTED: May 27, 2010.
HARVESTED: October 27, 2010.

PEST CONTROL: Roundup, Loomax.
CULTIVATION: None.
INSECTICIDES: None.

FIELD HISTORY: Last Crop: Millet.
FIELD PREPARATION: No-till.

SOIL: Rago Silty Loam. FERTILIZER: 40 lb N/a.

COMMENTS: Some variability in the trial due to drought and high temperatures during flowering and grain fill stages (about 56 days in duration). During these stages, there were 18 days where the temperature was above 90 degrees and 49 days with no measurable rainfall. Yields were good, but test weights were low, particularly with later maturing hybrids.

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>GDD</th>
<th>>90 F</th>
<th>>100 F</th>
<th>DAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>2.34</td>
<td>666</td>
<td>7</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>July</td>
<td>1.87</td>
<td>729</td>
<td>16</td>
<td>1</td>
<td>66</td>
</tr>
<tr>
<td>August</td>
<td>1.70</td>
<td>728</td>
<td>14</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>September</td>
<td>0.17</td>
<td>521</td>
<td>4</td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>October</td>
<td>0.67</td>
<td>258</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Total</td>
<td>6.75</td>
<td>2902</td>
<td>41</td>
<td>0</td>
<td>154</td>
</tr>
</tbody>
</table>

Summary: Growing Season Precipitation and Temperature

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>GDD</th>
<th>>90 F</th>
<th>>100 F</th>
<th>DAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>2.34</td>
<td>666</td>
<td>7</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>July</td>
<td>1.87</td>
<td>729</td>
<td>16</td>
<td>1</td>
<td>66</td>
</tr>
<tr>
<td>August</td>
<td>1.70</td>
<td>728</td>
<td>14</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>September</td>
<td>0.17</td>
<td>521</td>
<td>4</td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>October</td>
<td>0.67</td>
<td>258</td>
<td>0</td>
<td>0</td>
<td>154</td>
</tr>
<tr>
<td>Total</td>
<td>6.75</td>
<td>2902</td>
<td>41</td>
<td>0</td>
<td>154</td>
</tr>
</tbody>
</table>

Growing season from May 27 (planting) to October 27 (harvest).
GDD: Growing Degree Days for sorghum.
DAP: Days After Planting.
Table 2.--Dryland Grain Sorghum Hybrid Performance Trial at Akron, 2010.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Hybrid</th>
<th>50% Flowering</th>
<th>Plant Height</th>
<th>Plant Lodging</th>
<th>Test Weight</th>
<th>Grain Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DAP</td>
<td>in</td>
<td>score (0-10)</td>
<td>lb/bu</td>
<td>bu/a</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>KS310</td>
<td>74</td>
<td>36</td>
<td>1</td>
<td>51</td>
<td>53</td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS29-28</td>
<td>70</td>
<td>32</td>
<td>1</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS28-05</td>
<td>65</td>
<td>36</td>
<td>2</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>TRIUMPH</td>
<td>TR424</td>
<td>70</td>
<td>34</td>
<td>1</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>PIONEER</td>
<td>88P68</td>
<td>69</td>
<td>35</td>
<td>3</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>251</td>
<td>65</td>
<td>30</td>
<td>3</td>
<td>53</td>
<td>44</td>
</tr>
<tr>
<td>ASGROW</td>
<td>Pulsar</td>
<td>73</td>
<td>34</td>
<td>2</td>
<td>50</td>
<td>43</td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS37-07</td>
<td>78</td>
<td>35</td>
<td>1</td>
<td>49</td>
<td>43</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>SP3303</td>
<td>75</td>
<td>34</td>
<td>1</td>
<td>54</td>
<td>42</td>
</tr>
<tr>
<td>AERC</td>
<td>CGSH-8</td>
<td>66</td>
<td>36</td>
<td>4</td>
<td>48</td>
<td>38</td>
</tr>
<tr>
<td>TRIUMPH</td>
<td>TR420</td>
<td>68</td>
<td>33</td>
<td>3</td>
<td>54</td>
<td>37</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>NK5418</td>
<td>81</td>
<td>33</td>
<td>1</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>K35-Y5</td>
<td>76</td>
<td>33</td>
<td>1</td>
<td>49</td>
<td>34</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>72</td>
<td>34</td>
<td>2</td>
<td>51</td>
<td>44</td>
</tr>
<tr>
<td>LSD 0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>LSD 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.4</td>
<td></td>
</tr>
</tbody>
</table>

50% Flowering: minimum date on which a hybrid flowers on half of its population.
DAP: days after planting.
Yields are adjusted to 14.0% seed moisture content.
Table 3.—Summary: Dryland Grain Sorghum Hybrid Performance Trials at Akron, 2008-2010.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Hybrid</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2-Year Avg</th>
<th>3-Year Avg</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Avg</th>
<th>2-Year Avg</th>
<th>3-Year Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERC</td>
<td>CGSH-8</td>
<td>79</td>
<td>38</td>
<td>59</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>95</td>
<td>86</td>
<td>91</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS37-07</td>
<td>68</td>
<td>43</td>
<td>56</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>81</td>
<td>99</td>
<td>90</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS29-28</td>
<td>99</td>
<td>69</td>
<td>84</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>118</td>
<td>103</td>
<td>111</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>KS310</td>
<td>88</td>
<td>53</td>
<td>71</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>104</td>
<td>122</td>
<td>113</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>251</td>
<td>94</td>
<td>44</td>
<td>69</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>112</td>
<td>100</td>
<td>106</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>NK5418</td>
<td>64</td>
<td>36</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>77</td>
<td>83</td>
<td>80</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>K35-Y5</td>
<td>81</td>
<td>34</td>
<td>58</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>97</td>
<td>78</td>
<td>88</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>SP3303</td>
<td>59</td>
<td>42</td>
<td>51</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>96</td>
<td>83</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>TRUMPH</td>
<td>TR420</td>
<td>83</td>
<td>37</td>
<td>60</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>98</td>
<td>86</td>
<td>92</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>84</td>
<td>44</td>
<td>64</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>104</td>
<td>122</td>
<td>113</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Grain Yields were adjusted to 14.0% seed moisture content.
Dryland Grain Sorghum Hybrid Performance Trial at Brandon, 2010

PURPOSE: To identify high yielding hybrids under dryland conditions with 3000 sorghum heat units in Silty Loam soil.

PLOT: Four rows with 30” row spacing, 50’ long. SEEDING DENSITY: 43,600 seed/a. PLANTED: June 4.
HARVESTED: October 28.

EMERGENCE DATE: 12 days after planting. SOIL TEMP: 74 F.

PEST CONTROL: Preemergence Herbicides: Glyphosate 32 oz/a, Atrazine 0.9 lb/a, Dual 21 oz/a. Post Emergence Herbicides: 2,4-D amine (with drops). CULTIVATION: None. INSECTICIDES: None.

FIELD HISTORY: Last Crop: Sunflower. FIELD PREPARATION: No-till.

COMMENTS: Planted in fair soil moisture. Weed control was very good. Near normal precipitation for the growing season, however, July was wet and June and September were dry. No greenbug infestation. Five hybrids had greater than 40% lodging. Yields and test weights were good.

SOIL: Silty Loam for 0-8” and Silty Loam 8”-24” depths from soil analysis.

<table>
<thead>
<tr>
<th>Summary: Growing Season Precipitation and Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>June</td>
</tr>
<tr>
<td>July</td>
</tr>
<tr>
<td>August</td>
</tr>
<tr>
<td>September</td>
</tr>
<tr>
<td>October</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary: Fertilization.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizer</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Recommended</td>
</tr>
<tr>
<td>Applied</td>
</tr>
<tr>
<td>Yield Goal: 50 bu/a.</td>
</tr>
<tr>
<td>Actual Yield: 66 bu/a.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary: Soil Analysis of Plant Available Nutrients.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>mmhos/cm</td>
</tr>
<tr>
<td>0-8”</td>
</tr>
<tr>
<td>8”-24”</td>
</tr>
<tr>
<td>Comment</td>
</tr>
</tbody>
</table>

Manganese and Copper levels were adequate.
Available Soil Water
Dryland Grain Sorghum, Brandon, 2010

Fig. 1. Available soil water in dryland grain sorghum at Brandon. Gypsum block measurements taken to 4 ft. with 1 ft. increments. Total rainfall at Brandon from planting to first freeze was 8.98 in. Any increase in available soil water between weeks is from rain.
Table 4.--Dryland Grain Sorghum Hybrid Performance Trial at Brandon, 2010.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Hybrid</th>
<th>Days to Emerge</th>
<th>50% Bloom DAP</th>
<th>50% Mature GDD</th>
<th>Plant Ht. Group</th>
<th>Harvest Density</th>
<th>Plants Lodged</th>
<th>Test Wt.</th>
<th>Grain of Test Yield Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>in plants/a %</td>
<td>lb/bu (1000 X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYCOGEN</td>
<td>1G557</td>
<td>13</td>
<td>67</td>
<td>1746</td>
<td>111 E</td>
<td>40</td>
<td>24.7</td>
<td>30</td>
<td>57</td>
</tr>
<tr>
<td>TRIUMPH</td>
<td>TR424</td>
<td>10</td>
<td>64</td>
<td>1659</td>
<td>108 E</td>
<td>39</td>
<td>24.1</td>
<td>44</td>
<td>58</td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS28-05</td>
<td>12</td>
<td>63</td>
<td>1632</td>
<td>107 E</td>
<td>48</td>
<td>25.1</td>
<td>44</td>
<td>55</td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS29-28</td>
<td>13</td>
<td>66</td>
<td>1720</td>
<td>110 E</td>
<td>39</td>
<td>28.9</td>
<td>38</td>
<td>58</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>SP3303</td>
<td>13</td>
<td>66</td>
<td>1720</td>
<td>109 E</td>
<td>40</td>
<td>23.7</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>251</td>
<td>10</td>
<td>59</td>
<td>1527</td>
<td>102 E</td>
<td>38</td>
<td>26.1</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>KS310</td>
<td>13</td>
<td>70</td>
<td>1827</td>
<td>112 ME</td>
<td>45</td>
<td>29.3</td>
<td>31</td>
<td>55</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>K35-Y5</td>
<td>13</td>
<td>71</td>
<td>1851</td>
<td>115 ME</td>
<td>42</td>
<td>22.3</td>
<td>43</td>
<td>55</td>
</tr>
<tr>
<td>ASGROW</td>
<td>Pulsar</td>
<td>11</td>
<td>69</td>
<td>1804</td>
<td>113 ME</td>
<td>46</td>
<td>20.2</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>TRIUMPH</td>
<td>TR452</td>
<td>10</td>
<td>73</td>
<td>1893</td>
<td>116 M</td>
<td>47</td>
<td>31.7</td>
<td>28</td>
<td>57</td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS37-07</td>
<td>13</td>
<td>72</td>
<td>1870</td>
<td>117 M</td>
<td>46</td>
<td>29.6</td>
<td>34</td>
<td>57</td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>NK5418</td>
<td>13</td>
<td>73</td>
<td>1893</td>
<td>116 M</td>
<td>42</td>
<td>31.4</td>
<td>61</td>
<td>55</td>
</tr>
<tr>
<td>MYCOGEN</td>
<td>M3838</td>
<td>10</td>
<td>74</td>
<td>1915</td>
<td>120 M</td>
<td>42</td>
<td>18.1</td>
<td>33</td>
<td>58</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>12</td>
<td>68</td>
<td>1774</td>
<td>112 ME</td>
<td>43</td>
<td>25.8</td>
<td>36</td>
<td>57</td>
</tr>
</tbody>
</table>

LSD 0.20 23.4 15.2

Yields are adjusted to 14.0% seed moisture content.
DAP: Days After Planting or maturation of seed at first freeze.
Seed Maturation: EM, early milk; MM, mid milk; LM, late milk; ED, early dough; SD, soft dough; HD, hard dough; mature (DAP).
GDD: Growing Degree Days for sorghum.
Maturity Group: E, early; ME, medium early; M, medium; ML, medium late; L, late.
Table 5.—Summary: Dryland Grain Sorghum Hybrid Performance Trials at Brandon, 2008-2010.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Hybrid</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Avg</th>
<th>2-Year</th>
<th>3-Year</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Avg</th>
<th>2-Year</th>
<th>3-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASGROW</td>
<td>Pulsar</td>
<td>58</td>
<td>70</td>
<td>64</td>
<td></td>
<td>102</td>
<td>104</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS37-07</td>
<td>66</td>
<td>61</td>
<td>64</td>
<td></td>
<td>117</td>
<td>91</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS29-28</td>
<td>64</td>
<td>69</td>
<td>67</td>
<td></td>
<td>114</td>
<td>103</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEKALB</td>
<td>DKS28-05</td>
<td>61</td>
<td>80</td>
<td>71</td>
<td></td>
<td>115</td>
<td>89</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYCOGEN</td>
<td>1G557</td>
<td>67</td>
<td>78</td>
<td>73</td>
<td></td>
<td>118</td>
<td>116</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYCOGEN</td>
<td>M3838</td>
<td>49</td>
<td>48</td>
<td>49</td>
<td></td>
<td>87</td>
<td>71</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>KS310</td>
<td>62</td>
<td>79</td>
<td>71</td>
<td></td>
<td>110</td>
<td>118</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>251</td>
<td>60</td>
<td>55</td>
<td>58</td>
<td></td>
<td>106</td>
<td>81</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>NK5418</td>
<td>55</td>
<td>60</td>
<td>58</td>
<td></td>
<td>97</td>
<td>90</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>K35-Y5</td>
<td>53</td>
<td>72</td>
<td>63</td>
<td></td>
<td>94</td>
<td>108</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SORGHUM PARTNERS</td>
<td>SP3303</td>
<td>47</td>
<td>60</td>
<td>54</td>
<td></td>
<td>84</td>
<td>89</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUIMPH</td>
<td>TR452</td>
<td>54</td>
<td>66</td>
<td>60</td>
<td></td>
<td>96</td>
<td>98</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>------</td>
<td>57</td>
<td>66</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grain Yields were adjusted to 14.0% seed moisture content.
Dryland Grain Sorghum Hybrid Performance Trial at Walsh, 2010

PURPOSE: To identify high yielding hybrids under dryland conditions with 3700 sorghum heat units in a Silty Loam soil.

PLOT: Four rows with 30” row spacing, 50’ long. SEEDING DENSITY: 43,600 seed/a. PLANTED: June 2. HARVESTED: November 1.

EMERGENCE DATE: 7 days after planting. SOIL TEMP: 72 F.

PEST CONTROL: Preemergence Herbicides: Glyphosate, 24 oz/a; 2,4-D, 0.5 lb/a, Banvel 3 oz/a, Sharpen 3.0 oz/a. Post Emergence Herbicides: Banvel 4.0 oz/a, Atrazine 1.0 lb/a, COC 32 oz/a. CULTIVATION: None. INSECTICIDES: None.

FIELD HISTORY: Last Crop: Wheat. FIELD PREPARATION: No-till.

COMMENTS: Planted in good soil moisture. Weed control was very good. Above normal precipitation for the growing season with wet July and August. No greenbug infestation. No lodging. Late freeze date. Yields and test weights were excellent.

SOIL: Silty Loam for 0-8” and Silty Loam 8”-24” depths from soil analysis.

Summary: Growing Season Precipitation and Temperature

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>GDD</th>
<th>>90 F</th>
<th>>100 F</th>
<th>DAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>2.00</td>
<td>741</td>
<td>15</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>July</td>
<td>3.65</td>
<td>856</td>
<td>21</td>
<td>4</td>
<td>59</td>
</tr>
<tr>
<td>August</td>
<td>4.09</td>
<td>811</td>
<td>19</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>September</td>
<td>1.79</td>
<td>646</td>
<td>14</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>October</td>
<td>0.23</td>
<td>321</td>
<td>0</td>
<td>0</td>
<td>147</td>
</tr>
<tr>
<td>Total</td>
<td>11.76</td>
<td>3696</td>
<td>69</td>
<td>10</td>
<td>147</td>
</tr>
</tbody>
</table>

Growing season from June 2 (planting) to October 27 (first freeze, 27 F).

Summary: Soil Analysis of Plant Available Nutrients.

<table>
<thead>
<tr>
<th>Depth</th>
<th>pH</th>
<th>Salts</th>
<th>OM</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mmhos/cm</td>
<td>%</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-8”</td>
<td>7.8</td>
<td>0.7</td>
<td>1.9</td>
<td>5.3</td>
<td>389</td>
<td>0.8</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>8”-24”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Alka</td>
<td>Vlo</td>
<td>Hi</td>
<td>Mod</td>
<td>Lo</td>
<td>VHi</td>
<td>Lo</td>
<td>Marg</td>
</tr>
</tbody>
</table>

Manganese and Copper levels were adequate.

Summary: Fertilization.

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>N</th>
<th>P_2O_5</th>
<th>Zn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Applied</td>
<td>50</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 2. Available soil water in dryland grain sorghum at Walsh. Gypsum block measurements taken to 4 ft. with 1 ft. increments. Total rainfall at Walsh from planting to first freeze was 11.76 in. Any increase in available soil water between weeks is from rain.
Table 6.--Dryland Grain Sorghum Hybrid Performance Trial at Walsh, 2010.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Hybrid</th>
<th>Days to Emerge</th>
<th>50% Bloom DAP</th>
<th>50% Bloom GDD</th>
<th>50% Mature DAP</th>
<th>Plant Ht.</th>
<th>Harvest Test Wt.</th>
<th>Test Grain Yield</th>
<th>Yield % of Test Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEKALB DKS28-05</td>
<td>8</td>
<td>63</td>
<td>1719</td>
<td>109</td>
<td>E</td>
<td>41</td>
<td>27.9</td>
<td>59</td>
<td>87</td>
</tr>
<tr>
<td>TRIUMPH TR424</td>
<td>7</td>
<td>62</td>
<td>1687</td>
<td>107</td>
<td>E</td>
<td>39</td>
<td>30.6</td>
<td>61</td>
<td>83</td>
</tr>
<tr>
<td>DEKALB DKS29-28</td>
<td>8</td>
<td>62</td>
<td>1687</td>
<td>107</td>
<td>E</td>
<td>38</td>
<td>30.6</td>
<td>61</td>
<td>80</td>
</tr>
<tr>
<td>SORGHUM PARTNERS SP3303</td>
<td>9</td>
<td>64</td>
<td>1744</td>
<td>113</td>
<td>E</td>
<td>40</td>
<td>27.5</td>
<td>60</td>
<td>64</td>
</tr>
<tr>
<td>SORGHUM PARTNERS 251</td>
<td>7</td>
<td>58</td>
<td>1565</td>
<td>102</td>
<td>E</td>
<td>36</td>
<td>27.9</td>
<td>60</td>
<td>57</td>
</tr>
<tr>
<td>TRIUMPH TR438</td>
<td>7</td>
<td>65</td>
<td>1768</td>
<td>111</td>
<td>ME</td>
<td>44</td>
<td>31.0</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>MYCOGEN 627</td>
<td>9</td>
<td>71</td>
<td>1939</td>
<td>118</td>
<td>ME</td>
<td>44</td>
<td>28.7</td>
<td>60</td>
<td>97</td>
</tr>
<tr>
<td>SORGHUM PARTNERS K35-Y5</td>
<td>7</td>
<td>66</td>
<td>1794</td>
<td>112</td>
<td>ME</td>
<td>40</td>
<td>22.9</td>
<td>62</td>
<td>95</td>
</tr>
<tr>
<td>DEKALB DKS37-07</td>
<td>7</td>
<td>70</td>
<td>1909</td>
<td>118</td>
<td>ME</td>
<td>48</td>
<td>31.4</td>
<td>61</td>
<td>91</td>
</tr>
<tr>
<td>ASGROW Pulsar</td>
<td>8</td>
<td>65</td>
<td>1768</td>
<td>117</td>
<td>ME</td>
<td>42</td>
<td>22.9</td>
<td>60</td>
<td>88</td>
</tr>
<tr>
<td>SORGHUM PARTNERS KS310</td>
<td>6</td>
<td>66</td>
<td>1794</td>
<td>112</td>
<td>ME</td>
<td>42</td>
<td>29.4</td>
<td>61</td>
<td>79</td>
</tr>
<tr>
<td>SORGHUM PARTNERS NK5418</td>
<td>6</td>
<td>72</td>
<td>1969</td>
<td>118</td>
<td>M</td>
<td>43</td>
<td>29.8</td>
<td>61</td>
<td>112</td>
</tr>
<tr>
<td>TRIUMPH TR452</td>
<td>8</td>
<td>72</td>
<td>1969</td>
<td>119</td>
<td>M</td>
<td>46</td>
<td>24.4</td>
<td>61</td>
<td>108</td>
</tr>
<tr>
<td>MYCOGEN 1G600</td>
<td>7</td>
<td>73</td>
<td>1996</td>
<td>123</td>
<td>M</td>
<td>45</td>
<td>29.4</td>
<td>59</td>
<td>95</td>
</tr>
<tr>
<td>TRIUMPH TR448</td>
<td>7</td>
<td>72</td>
<td>1969</td>
<td>122</td>
<td>M</td>
<td>43</td>
<td>29.4</td>
<td>61</td>
<td>93</td>
</tr>
<tr>
<td>TRIUMPH TRX84732</td>
<td>8</td>
<td>72</td>
<td>1969</td>
<td>120</td>
<td>M</td>
<td>47</td>
<td>19.4</td>
<td>61</td>
<td>89</td>
</tr>
<tr>
<td>MYCOGEN M3838</td>
<td>8</td>
<td>72</td>
<td>1969</td>
<td>122</td>
<td>M</td>
<td>43</td>
<td>24.8</td>
<td>60</td>
<td>88</td>
</tr>
<tr>
<td>(Check) 399 X 2737</td>
<td>7</td>
<td>83</td>
<td>2255</td>
<td>131</td>
<td>ML</td>
<td>42</td>
<td>21.3</td>
<td>59</td>
<td>101</td>
</tr>
</tbody>
</table>

Average 7 68 1859 116 ME 42 27.2 60 89 6.5

\1 Planted: June 2; Harvested: November 1, 2010.
Yields are adjusted to 14.0% seed moisture content.
DAP: Days After Planting or maturation of seed at first freeze.
Seed Maturation: EM, early milk; MM, mid milk; LM, late milk; ED, early dough; SD, soft dough; HD, hard dough; mature (DAP GDD: Growing Degree Days for sorghum.
Maturity Group: E, early; ME, medium early; M, medium; ML, medium late; L, late.
Table 7.—Summary: Dryland Grain Sorghum Hybrid Performance Trials at Walsh, 2008-2010.

Brand	Hybrid	2-Year	3-Year												
ASGROW	Pulsar	75	56	88	72	73	112	104	98	101	105				
DEKALB	DKS37-07	75	65	91	78	77	112	121	102	112	112				
DEKALB	DKS36-16	73	67	--	70	--	110	125	--	118	--				
DEKALB	DKS29-28	65	60	80	70	68	98	130	89	110	106				
DEKALB	DKS28-05	--	61	80	71	--	--	115	89	102	--				
DEKALB	DK39Y	63	51	--	57	--	95	96	--	96	--				
SORGHUM PARTNERS	KS310	63	72	79	76	71	95	135	89	112	106				
SORGHUM PARTNERS	251	49	45	57	51	50	74	83	63	73	73				
SORGHUM PARTNERS	NK5418	77	65	112	89	85	116	122	126	124	121				
SORGHUM PARTNERS	K35-Y5	--	55	95	75	--	--	103	107	105	--				
SORGHUM PARTNERS	SP3303	--	46	64	55	--	--	86	72	79	--				
TRUIMPH	TR438	--	62	100	81	--	--	116	112	114	--				
TRUIMPH	TR448	--	64	93	79	--	--	119	104	112	--				
TRUIMPH	TR452	--	62	108	85	--	--	116	121	119	--				
TRUIMPH	TRX84732	--	63	89	76	--	--	117	100	109	--				
(Check)	399 X 2737	58	38	101	70	66	87	72	113	93	91				

Grain Yields were adjusted to 14.0% seed moisture content.
The site was pre-irrigated with furrow irrigation in 2008.