Making, Blending, and Selling Wines
From Cold Hardy Cultivars

Stephen Menke
Colorado State University-WCRC
Desirable Traits in Hybrid Grape Wines

- Great fruitiness
- Usually good color
- Sufficient acid
- Great taste intensity upon presentation to mouth
- Good food pairing
- Good dry or sweet
Problem Traits in Hybrid Grape Wines

- Some strong varietal aromas and tastes
- Can be too acid
- Tannins low
- Prone to structural breakdown of flavor and body
- Sweeter wines prone to re-fermentation
Cool Climate *Vitis vinifera* Intraspecific Crosses

- **Cool Climate** = winter minimum of -5°F to -15°F, and depends on acclimation
- **Lemberger** (red, moderate cold resistance, fruity, good wine quality)
- **Comtessa** (red used for white, moderate cold resistance, fruity wine)
- **Siegerrebe** (white, fairly cold resistant, very floral wine)
- **Noblessa** (white, moderate cold resistance, good wine quality reported)
- **Morio muscat** (white, moderate cold, northeast US, very floral and fruity)
- **Madeleine Angevine** (white, moderate cold, good wine quality reported)
Cool Climate Hybrids/Natives

- **vinifera/American, vinifera/amurensis**, Cornell, Minnesota, UC Davis
- Useful site
 http://viticulture.hort.iastate.edu/cultivars/cultivars.html
- Cool Climate = winter minimum of -5°F to -15°F, and depends on acclimation
- Reds
 - Baco noir, Chambourcin, Chancellor, Concord, Corot noir, Crimson cabernet, DeChaunac, GR7, Kozma 55, Kozma 525, Landot noir, Leon Millot, Marechal Foch, Noiret, Norton, St. Vincent
Cool Climate Hybrids/Natives

- *vinifera/American, vinifera/amurensis, Cornell, Minnesota, UC Davis*
- **Cool Climate** = winter minimum of -5°F to -15°F, and depends on acclimation
- **Whites**
 - Catawba (rosé), Cayuga white, Chardonel, Delaware, Niagara, Seyval blanc, Traminette, Valvin muscat, Veeblanc, Vidal blanc, Vignoles
Cold Climate Hybrids

- Swenson, Minnesota, Cornell, etc.
- **Cold Climate** = winter minimum of -15°F to -30°F, depends on acclimation
- Reds
 - Baltica, Frontenac, Marquette, MN 1200, Sabrevois, St. Croix, Temparia, Valiant, Zilga
Cold Climate Hybrids

- Swenson, Minnesota, Cornell, etc.
- **Cold Climate** = winter minimum of -15°F to -30°F, and depends on acclimation
- Whites
 - Alpenglow, Brianna, Edelweiss, Espirit, Frontenac gris (gray used for white), Kay Gray, LaCrescent, LaCrosse, Louise Swenson, Petite Amie, Petite Jewel, Prairie Star, Skujinsh, St. Pepin, Swenson white, Ventura
Winemaking in Cool/Cold Climates

- General fruit harvest characteristics
 - Supply affected by late spring/early fall frost damage
 - Ripeness affected by early fall frosts
 - Acids often higher (cool nights during veraison)
 - Can have both high pH and high acid
 - Ripeness of skin/seeds vs. Brix not always consonant
 - Tannin and/or color may be lower
 - Canopy management for berry ripeness essential
 - Irrigation surplus/deficit can affect flavors
Winemaking in Cool/Cold Climates

- **Hybrid fruit harvest characteristics**
 - Not usually suitable for high Brix winemaking
 - Can have stronger native flavors with higher 0°Brix
 - May need to limit skin contact and/or vint at below 20 0°Brix
 - Acids in hybrids are often very high (above 10 g/L)
 - Often need to blend with lower acid wines
 - Often need to do malolactic or salting out
 - Sometimes high pH with high acid
 - Tannins lower
 - May need tannin additions
 - Berry Sensory Evaluation very helpful
 - Style selection very important
Winemaking in Cool/Cold Climates

Must modifications

- Check must for K^+, TA, pH, and organic acid profile
- If high acid/normal pH and K^+
 - blend with lower acid must
 - wait and do malolactic on wine
- If high acid/low pH, normal K^+
 - can seed with bitartrate to precipitate bitartrate
 - can add K_2CO_3 or $CaCO_3$, can affect flavor & texture of wine
- If high acid/high pH
 - Blend with low acid and low pH must
 - If high K^+, and $< pH 3.6$, can seed with tartrate to precipitate bitartrate
 - If $> pH 3.6$, can use electrodialysis to replace K^+ with H^+
Winemaking in Cool/Cold Climates

- **Must modifications**
 - Hybrids need more pectinase added to must
 - 25-50 mL of 10% solution/ton grapes (use pectinase with low cinnamyl esterase and low anthocyanase)
 - Press whites and remove heavy lees quickly
 - Many hybrids have low tannins
 - Tannin and enzyme additives may be useful
 - Hot pressing may be useful to mature tannins and color
 - Some hybrids have vegetative or “funky” musts
 - Grape and/or oak tannins in must during fermentation may be useful
Winemaking in Cool/Cold Climates

- **Tannin Anomalies in Hybrids**
 - Hybrid wines mostly low in tannins → need to find ways to enhance tannin.
 - However, some hybrid grapes have as much tannin as *vinifera* grapes.
 - Some *vinifera* grapes have much lower tannin in wines.
 - ∴ Extraction of tannins different for different cultivars and possibly for each vintage, especially for hybrids.
 - Hybrid skins physically different post-fermentation than *vinifera*.
Winemaking in Cool/Cold Climates

- Tannin Anomalies in Hybrids
 - Conclusion is that differences in tannin extraction may reflect physical or chemical sequestration
 - how they are bound in the skin matrix
 - Differences in bonding properties in complex chemical associations
Winemaking in Cool/Cold Climates

- **Hybrid Fermentations**
 - Yeast needs similar to *vinifera*
 - Condition yeast with vitamins, amino acids, yeast metabolites, and nitrogen
 - Add nitrogen in parts to fermentation
 - Yeast matching with hybrids in its infancy
 - Lallemand has listing in 2013 catalog
 - Mixed results with yeast with malolactic capabilities
 - Can try malolactic co-fermentation w/high acid musts
 - Both reds and whites can benefit
Winemaking in Cool/Cold Climates

- Hybrid Fermentations
 - Temperatures
 - similar to vinifera for both whites and reds
 - sometimes cooler reds to minimize skin extraction
 - Pressing reds
 - Extended fermentation on skins not usually recommended
 - Lighter pressing reduces “hybrid” flavors
Winemaking in Cool/Cold Climates

- **Cellaring Hybrids**
 - More subject to H$_2$S during fermentation
 - Keep careful watch during and right after fermentations
 - Aerate and use free SO$_2$ and/or copper sulfate if needed, early in cellaring process
 - Avoid waiting to do malolactic until warmer weather
 - Do protein tests and any resulting fining early
Winemaking in Cool/Cold Climates

Hybrid wine styles

- Many hybrids bottled early, unoaked and fruity
 - Usually good food and restaurant wines

- Many hybrid wines have high acid and can be sweetened to good sweetness/acid balance
 - 1 to 8% residual (7 to 12 g/L acid), plus potassium sorbate

- Many make good late harvest or ice wines or ports

- If aging reds, tannin addition to must and/or heavier oaking can be useful
Winemaking in Cool/Cold Climates

- **Hybrid wine blends**
 - Many hybrids blend well with *vinifera*
 - Usually good food and restaurant wines
 - Can use to adjust acid and alcohol and fruitiness or spiciness
 - Flavor profiles need to be carefully adjusted while blending
 - Usually start with high ratio, either way
Grande Valley *Vitis vinifera* dependent

- Mixture of warm and cool *Vitis vinifera*, irrigated, some sites better for less cold-hardy hybrids

Great Plains, High Plains and Mountain sub-regions

- Cool or cold climate viticulture w/varied moisture
- Hybrids, *Vitis labrusca, Vitis vinifera* all grown
Niche Market Strategies in Cool/Cold Climates

- Make reputation with standard *vinifera* and add cold tolerant grapes later
 - Limited suitable sites \rightarrow limited volume and limited market penetration
 - Vineyard sites may not be near market population
 - Competition with cheaper wine from known reputation regions
- Hard to make local standard *vinifera* terroir compete with known reputation regions
Niche Market Strategies in Cool/Cold Climates

- Create new markets with cold tolerant varieties
 - Many suitable sites \rightarrow unlimited potential volume \rightarrow pervasive market penetration possible
 - Vineyard sites near market population \rightarrow familiarity
 - Niche variation means little competition

- Definitions of niche wine quality must be created
 - Whole market must be created from scratch
 - Dedicated pioneer growers and winemakers
 - Consumer education and winemaking skill take time
 - Local winery tasting rooms, farmer’s markets, restaurants essential to education of consumer and marketing players
National and International Marketing Possibilities

- Regional, Sub-regional, AVA ➔ Terroir and Style Niches
 - Niche definition especially important in developing regions
- Newer cool climate regions are innovation hot spots
 - Standard *vinifera* varietals in better parts of cool region
 - Unusual *vinifera* varietals in moderately cold parts of regions
 - Inter-specific hybrids and native American in coldest regions
 - 19th and early 20th century by American and French breeders
 - New York breeding in 20th and 21st centuries
 - Wisconsin/Minnesota breeding in 20th and 21st centuries
National and International Marketing Possibilities

- Niche regional wines: cool climate marketing
 - Varietals
 - Standard *vinifera*
 - Hybrids of *vinifera* and native species
 - Hybrid backcrossed w/hybrid or *vinifera*
 - Unusual *vinifera or vinifera/vinifera* cross
National and International Marketing Possibilities

- Niche regional wines: cool climate marketing
- Blends
 - Standard *vinifera*
 - Unusual *vinifera*/*standard vinifera*
 - Hybrid/*vinifera*
 - Hybrid/hybrid
 - Hybrid/*vinifera*/*labrusca*
ADVANTAGES OF BLENDS
REGIONAL STYLES AND TERROIR

- Unique Aroma and Flavor Identities
 - No competition in niches in all of world
 - When identity established \rightarrow scarcity \rightarrow higher prices
- Great fit with grapes grown in all parts of region
 - Specialization of expression of local terroir effects
 - Model from other regions + cuisine co-development
- Diverse palette to create wines for foreign tastes
 - Export markets expand niches to larger market
DISADVANTAGES OF BLENDS
REGIONAL STYLES AND TERROIR

- Unique Aroma and Flavor Identities
 - Hard to establish brand identity from unknown status
 - Must educate consumers to unique characters
- Lack of definition of local vineyard terroir effects
 - May take decades
- Lack of experience in blending regional styles
 - May take years of experimentation to develop unique wines
- May take years of marketing feedback to match wines to consumer niches
KEYS TO NICHE SUCCESS
ARE QUALITY AND CONSISTENCY

- **Product and Image Must Coordinate with Niche Strategy**
- **Unique Aroma and Flavor Identities Equate with Quality**
 - Must show high quality fruit and winemaking sensory characteristics
 - Must educate winemakers to sensory quality definitions
 - Must educate consumers to sensory quality definitions
- **Equate Vineyard and Regional Terroir with High Quality**
 - Rootstock, cultivar, canopy, and pest management for optimal quality operation
TAKE HOME LESSONS
REGIONAL WINES

- Create and exploit unique, high quality, valuable wine niches, both here and to export
- Unique wine niches express our grapes, climate, history, and cuisine
- Terroir, regional definitions, and blending skills take time and experimentation to perfect niches
- Unique wines need highly effective marketing
- Without unique regional wines, growth potential is limited by excessive competition
GC/MS Profiling of Five Colorado Cultivars

Stephen Menke and Julie Weinke
Colorado State University-WCRC
Colorado Winegrowing

- Colorado industry → 100 small wineries
 - Based primarily on arid, less cold Western Slope sites with *vinifera* varieties and *Phylloxera* free
 - Untimely or severe cold events major factor
 - High altitude: 4300-7800 feet
 - Many sites with continental climate available for hybrids, but only few sites utilized
 - Medium length season with warm post-veraison rush to harvest
Colorado Questions

- Why does Colorado *vinifera* wine taste like it has a hole in the middle palate?

- Does Colorado hybrid wine offer blending solutions?

- Sensory questions demand sensory answers
Colorado Questions

- Possible causes to investigate
 - Traditional horticultural management options
 - Unique climate/altitude factors
 - Soil factors
- Answers must include sensory knowledge
 - No sensory literature on unique Colorado conditions
 - Basic sensory profiles useful starting point
Project Parameters

- Limited funds and time
 - Basic explorations → collect broad profiles and then select areas of interest
 - Begin with broad, well-defined targets = cultivars
 - Select local cultivars that are relatively unstudied but useful
 - Use cheap and versatile equipment
 - Use minimal but dependable labor
Profile Definition

- **Dictionary**
 - a verbal, arithmetical, or graphic analysis of a process or relationship
 - a concise biographical sketch

- **Wine Profile**
 - Profile includes both volatiles and non-volatiles
 - The unique temporal display of biochemically determined attributes of a wine, including any meaning given by presentation to the human sensory apparatus
Profile Uses

- **Wine Identification**
 - Cultivar
 - Terroir
 - Sensory attributes

- **Sensory tool for winemaker /blender**
 - Knowledge of chemicals and ratios can give understanding of chemical interactions as related to sensory profile
 - sensory style of wine more accurate and consistent
Many Profiling Tools

- Comprehensive reduction/integration strategy
 - Reductive chemical analysis
 - Chromatographic separations
 - Spectroscopic identification
 - Molecular genetic analysis
 - Biological meaning of chemicals
 - Sensory analysis
 - Psychological meaning
- Correlation of chemical, genetic, and sensory will give unique meanings
Chemical Analysis Limitations

- Specific fractionation by headspace, total aromatics, phenolics, elemental, etc
 - Data within fractionation limits easier to compare
 - Studies very diverse, harder to integrate, expensive equipment

- Broad analysis
 - Total composition data is dense \rightarrow harder to separate and identify data points and data gives confusing array of potential directions
 - Gross differences easier to spot and exploit by stretching area of interest
Potential Sensory Limitations

- Human apparatus \rightarrow very sensitive and integrated detection
- Sensory panels’ lexicon translates well to consumer attributes
- Psychological variables difficult to decipher
- Sensory panels expensive over long haul
- Sensory panels correlation with chemical data difficult
Experimental Plan

- GC/MS → dependable, versatile first step
 - Direct injection of whole wine → broad snapshot
 - Rkatsiteli, Chambourcin, Noiret, Corot noir, Traminette
 - un-fined, un-oaked, un-filtered, single vintage per cultivar
 - RTX-wax 30 m x 0.25 mm id x 0.25 um film, w/guard
 - EID and Chemstation software
 - Spike w/pure standard wine chemicals
 - Calibrate RI against n-alkanes (C7 to C26)
Future Experiments

- GC/O and QDA panels on same samples
 - Samples from one vintage w/temperature, yeast, skin contact, horticultural, aging differences

- Expand profiles to include traditional varieties and blends

- Cooperative investigations to complete and integrate profiles for various terroir conditions

- NE-1020 members and any others
A=Ethanol, B=1-Pentanol, C=Acetic Acid, D=2,3-Butanediol, E=Propylene Glycol, F=Phenylethyl Alcohol, G=4-Ethylguaiacol, H=Glycerin, I=4-Hydroxyphenethyl Alcohol

1* = 2-methyl-1-butanol, 2* = 2,4-hexadien-1-ol, 3* = 3-methoxy-2,4,6-trimethyl-phenol, 4* = 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one
A=Ethanol, B=1-Pentanol, C=Acetic Acid, D=2,3-Butanediol, E=Propylene Glycol, F=Phenylethyl Alcohol, G=4-Ethylguaiacol, H=Glycerin, I=4-Hydroxyphenethyl Alcohol

1# = furanmethanol, 2# = 3-(methylthio)-1-propanol, 3# =2(5H)-Furanone, 4# = 1-(2-furanmethyl)-1H-pyrrole
Initial Aroma Chemicals for Profiles

- GC/MS gives identification
 - but not quantity or smell intensity
- Some aroma chemicals unidentified
 - May be very potent in tiny amounts
- Some aromas common to all wines
 - Different ratios of amount and smell intensity
- GC-O could give real time correlation
 - Identification and intensity
- Sensory Panels best for correlating profile
Initial Aroma Chemicals for Rkatsiteli

- alcohol, acetic acid, fruity, earthy fruity, rose, floral rose, dried rose flower, rose water, musty floral, wine-like, waxy, creamy, buttery, caramel, almond, whiskey, cognac, brandy, burnt, fusel, ether, fishy, ammonia, disagreeable, chocolate, apple, apricot, cranberry, grape, peach, pear, banana, cooked apple, pineapple
Initial Aroma Chemicals for Chambourcin

- alcohol, acetic acid, fruity, earthy fruity, rose, floral rose, dried rose flower, rose water, musty floral, wine-like, waxy, creamy, buttery, caramel, whiskey, burnt, fusel, smoky, phenolic, benzene-like, chocolate, apple, apricot, cranberry, grape, peach, pear, strawberry, banana, cooked apple
Initial Aroma Chemicals for Traminette

- alcohol, acetic acid, fruity, earthy, fruity, rose, floral rose, dried rose flower, rose water, musty floral, wine-like, waxy, creamy, buttery, oily, fatty, whiskey, cognac, brandy, burnt, fusel, smoky, phenolic, benzene-like, musty, goat, cheesy, almond, clove, spicy, chocolate, apple, apricot, cranberry, grape, peach, pear, strawberry, banana, cooked apple, pineapple
Initial Aroma Chemicals for Noiret

- alcohol, acetic acid, fruity, earthy fruity, rose, floral rose, dried rose flower, rose water, musty floral, wine-like, waxy, burnt, chrysanthemum, fusel, benzene-like, caramel, nutty, meaty, chocolate, apple, apricot, cranberry, grape, peach, pear, cooked apple
Initial Aroma Chemicals for Corot noir

- alcohol, acetic acid, fruity, earthy fruity, rose, floral rose, dried rose flower, rose water, musty floral, wine-like, waxy, creamy, buttery, fusel, smoky, phenolic, ether, amine-like, nutty, meaty, chocolate, apple, apricot, cranberry, grape, peach, pear, cooked apple
Acknowledgements

- Julie Weinke for GC/MS analysis
- Horst Caspari, Serena Norsworthy for help in winemaking

Funding
- Colorado State University
- Colorado Wine Industry Development Board
- Colorado Association for Viticulture & Enology