SYLLABUS

Geographic Information Systems in Agriculture

Fall Semester 2011

Course Number SOCR 377
3 Credit Hours

I.

A. Instructor:

Raj Khosla

Soil and Crop Sciences

Office: C013 Plant Science Building

Phone office: 491-1920

Email: <u>raj.khosla@colostate.edu</u> Email is one of the most convenient ways of communicating with me. I usually

check my email several times a day.

Office Hours: Any time the door is open or the light is on. Alternatively, you can schedule a time with me and I will

be there.

B. Teaching Assistant:

Louis Longchamps

W010 Plant Sciences Building

Soil & Crop Sciences Phone office: 491-6237

Email: louis.longchamps@gmail.com

Office Hours: Wednesdays 10am to 12 noon

II. Course Schedule:

- A. Lecture: Tues. and Thurs. 12:30 pm through 1:45pm. Room #105 Military Science Bldg. (Alternate arrangements: lecture time may be re-scheduled as per class requirements)
- B. Laboratory: Scheduled for Thursdays 2:00 through 4:40pm. Room W-10 Precision Agriculture GIS Lab in Plant Sciences Bldg
 [You will be informed promptly where we will meet for which lab.]

For your lab project and home-works, you may work in my Precision Ag/ GIS Lab located in W-10 Plant Sciences Building. It is open from 9am to 4:30pm and you may complete your homework on the computers on the East Wall of the lab.

(Alternate arrangements: Lab time and place may be re-scheduled as per class requirements)

C. Field trip: Aug 25th, Sep 1st, 8th, 22nd, 29th, and Oct 13th.

D. Midterm Exams: September 13th and October 6th.

E. Final Examination: Tuesday November 1st (Time: 12:30pm to 1:45pm)

III. Course Objectives:

Upon completion of this course, students will be able to:

- 1. Understand the principles and elements of Global Positioning systems (GPS)
- 2. Identify the errors associated with GPS systems
- 3. Understand the concepts and functioning of Differential Global Positioning Systems (DGPS)
- 4. Understand the concept of spatial variability
- 5. Realize the scope of precision farming and the know the precision farming cycle
- 6. Understand the potential benefits of Precision Agriculture
- 7. Do real-time field mapping and grid soil sampling
- 8. Understand variable rate nutrient and other agri-chemical digital application maps.
- 9. Monitor and map yield data and post processing of the yield maps
- 10. Work with precision farming hardware and software.

IV. Course Grading:

A. Midterm examination: 35 percent (15 + 20)

B. Home work Problems 15 percent

C. In class and take home lab assignments: 15 percent

D. Final lab project: 15 percent

E. Final Exam (Comprehensive): 20 percent

V. Text book:

The Precision-Farming Guide for Agriculturists: Editor John E. Kuhar. Published by Deere & Company, Moline, IL.

Other books, research papers and reading material will be reserved in the library or my lab for you to check out and do the assignments.