Biosolids Application to No-Till Dryland Rotations: 2012 Results
K.A. Barbarick, N.C. Hansen, and J.P. McDaniel

Professor, Associate Professor, and Research Associate

Department of Soil and Crop Sciences

Biosolids Application to No-Till Dryland Crop Rotations: 2012 Results

The Cities of Littleton and Englewood, Colorado and the Colorado Agricultural Experiment Station (project number 15-2924) funded this project.

Mention of a trademark or proprietary product does not constitute endorsement by the Colorado Agricultural Experiment Station.

Colorado State University is an equal opportunity/affirmative action institution and complies with all Federal and Colorado State laws, regulations, and executive orders regarding affirmative action requirements in all programs. The Office of Equal Opportunity is located in 101 Student Services. In order to assist Colorado State University in meeting its affirmative action responsibilities, ethnic minorities, women, and other protected class members are encouraged to apply and to so identify themselves.
INTRODUCTION

Biosolids recycling on dryland winter wheat (*Triticum aestivum*, L.) can supply a reliable, slow-release source of nitrogen (N) (Barbarick et al., 1992). Barbarick and Ippolito (2000, 2007) found that continuous application of biosolids from the Littleton/Englewood, CO wastewater treatment facility to dryland winter wheat-fallow rotation provides about 16 lbs N per dry ton. This research involved tilling the biosolids into the top 8 inches of soil. A new question related to soil management in a biosolids beneficial-use program is: How much N would be available if the biosolids were surface-applied in a no-till dryland agroecosystem with winter wheat-fallow (WF) and winter wheat-corn (*Zea mays*, L.)-fallow (WCF) crop rotations?

Our objective was to compare agronomic rates of commercial N fertilizer to an equivalent rate of biosolids in combination with WF and WCF crop rotations. Our hypotheses were that biosolids addition, compared to N fertilizer, would:

1. Produce similar crop yields;
2. Not differ in grain P, Zn, and Cu levels.
3. Not differ in soil P, Zn, and Cu AB-DTPA extractable concentrations, a measure of plant availability (Barbarick and Workman, 1987); and
4. Not affect soil salinity (electrical conductivity of saturated soil-paste extract, EC), pH or soil accumulation of nitrate-N (NO$_3$-N).

MATERIALS AND METHODS

In 1999, we established our research on land owned by the Cities of Littleton and Englewood (L/E) in eastern Adams County, approximately 28 miles east of Byers, CO. The latitude longitude for the plot corners are 39°45’47”/103°47”50” (southwest), 39°45’47”/103°47”17” (southeast), 39°46’7”/103°47”50” (northwest), 39°46’7”/103°47”17” (northeast). The Linnebur family manages the farming operations for L/E. Soils belong to the Adena-Colby association where the Adena soil is classified as an Ustollic Paleargid and Colby is classified as an Ustic Torriorthent. No-till management is used in conjunction with crop rotations of WF and WCF. We originally also used a wheat-wheat-corn-sunflower (*Helianthus annuus*, L.)-fallow rotation. After the 2004 growing season, we abandoned this rotation because of persistent droughty conditions that restricted sunflower production.

We installed a Campbell Scientific weather station at the site in April 2000; Tables 1 and 2 present mean temperature and precipitation data, and growing season precipitation, respectively.

The first biosolids application occurred in August 1999. Planting sequences are given in Table 3. We used a randomized complete block design with four blocks. Each phase of each rotation was present every year. Each plot was 100 feet wide by approximately 0.5 mile (2640...
feet) long. The width of each plot was split so that one 50-foot wide section received commercial N fertilizer applied with the seed and sidedressed after plant establishment (Table 3), and the second 50-foot wide section received biosolids applied by L/E with a manure spreader. We randomly selected which half of the strip in each rotation received N fertilizer or biosolids. Characteristics of the L/E biosolids are provided in Table 4. The N fertilizer and biosolids applications were based on soil test recommendations determined on each plot before planting each crop. The Cities of L/E completed biosolids application for wheat in August 1999, 2001, 2003, and 2004 and for the summer crops in March 2000, 2001, 2002, 2003, 2004, 2005, and 2012. We planted the first corn crop in May 2000. We also established wheat rotations in September 2000 through 2012 and corn rotations in May 2001 through 2012, and sunflower plantings in June 2001, 2002, and 2003. Soil moisture was inadequate in June 2004 to plant sunflowers (see Table 1). The sunflower portion of the study was abandoned in 2004.

Following each harvest, we collected soil samples using a Giddings hydraulic probe. For AB-DTPA extractable Cu, P, and Zn (Barbarick and Workman, 1987) and EC (Rhoades, 1996) and pH (Thomas, 1996), we sampled to one foot and separated the samples into 0-2, 2-4, 4-8, and 8-12 inch depth increments. For soil NO$_3$-N (Mulvaney, 1996) analyses, we sampled to 6 feet and separated the samples into 0-2, 2-4, 4-8, 8-12, 12-24, 24-36, 36-48, 48-60, and 60-72 inch depth increments.

For the wheat rotations, the experimental design was a split-plot design where type of rotation was the main plot and type of nutrient addition (commercial N fertilizer versus L/E biosolids) was the subplot. For crop yields and soil-sample analyses, main plot effects, subplot effects, and interactions were tested for significance using least significant difference (LSD) at the 0.10 probability level. Since we only had one corn rotation, we could only compare the commercial N versus L/E biosolids using a “t” test at the 0.10 probability level.
RESULTS AND DISCUSSION

Precipitation Data

2012 Crop Grain Data

No significant wheat (Figure 1) or corn yield (Table 5) differences were found for type of rotation or nutrient source. Average wheat yield for our treatments was 45 bushels/acre while the Colorado state average was 46 bushels/acre (USDA NASS Colorado Field Office, 2012). The corn yields indicate a near crop failure. Only 3.8 inches of rain were received during the corn growing season (Table 2).

The rotation by nutrient source interaction affected the wheat grain P and Zn content with the highest concentrations found in the WF rotation that received biosolids (Figures 3 and 4). The nitrogen fertilizer treatment increased corn-grain Cu compared the biosolids treatment (Table 5).

2012 Soil Data

In the wheat plots, several rotation effects and rotation by nutrient source interactions were found for ABDTPA P, Zn, and Cu and for EC and NO$_3$-N (Figures 5-10); however, no consistent trend with soil depth was noted. Biosolids application led to larger ABDTPA Cu concentrations in the top 4 inches of soil and larger salt content (EC) in the top 2 inches.

In the CFW rotation, we found that the biosolids produced higher ABDTPA P, Zn, and Cu in the top 2 inches and ABDTPA P in the 2 to 4 inch depth (Table 6). We expected this result since the biosolids were surface applied and not incorporated. Biosolids also led to higher levels of NO$_3$-N in the 0 to 2, 2 to 4, 36 to 48, 48 to 60, and 60 to 72 inch depths.
CONCLUSIONS

Relative to our hypotheses listed on page 3, we found the following trends:

1. In the 2012 wheat and corn plots, we observed that biosolids did not significantly increase yields or grain concentrations of protein, P, Zn, and Cu compared to N fertilizer.

2. For dryland wheat in 2012, we observed that biosolids additions did increase some soil levels of ABDTPA-extractable P, Zn, Cu, and soil NO₃-N concentrations.

3. We found that biosolids application did produce higher soil salinity (EC) levels in the top 2 inches in the wheat plots as compared to N fertilizer applications. No consistent trends were found for soil pH.

4. We applied biosolids to the 2012-13 wheat plots.
REFERENCES

Table 1. Monthly mean maximum (Max) and minimum (Min) temperatures and precipitation (Precip) in inches at the Byers research site, 2000-2011. (Weather station was installed in April, 2000).

<table>
<thead>
<tr>
<th>Month</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max °F</td>
<td>Min °F</td>
<td>Precip inches</td>
<td>Max °F</td>
<td>Min °F</td>
</tr>
<tr>
<td>January</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.0</td>
<td>20.7</td>
<td>0.2</td>
<td>44.1</td>
<td>17.0</td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42.1</td>
<td>19.0</td>
<td>0.1</td>
<td>48.2</td>
<td>19.7</td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49.9</td>
<td>27.5</td>
<td>0.2</td>
<td>46.5</td>
<td>17.7</td>
</tr>
<tr>
<td>April</td>
<td>68.9</td>
<td>38.4</td>
<td>0.6</td>
<td>64.2</td>
<td>36.4</td>
</tr>
<tr>
<td>May</td>
<td>78.4</td>
<td>47.0</td>
<td>0.9</td>
<td>70.0</td>
<td>43.7</td>
</tr>
<tr>
<td>June</td>
<td>80.4</td>
<td>49.3</td>
<td>0.9</td>
<td>85.9</td>
<td>53.5</td>
</tr>
<tr>
<td>July</td>
<td>91.9</td>
<td>61.0</td>
<td>2.5</td>
<td>92.2</td>
<td>61.1</td>
</tr>
<tr>
<td>August</td>
<td>90.8</td>
<td>60.2</td>
<td>3.5</td>
<td>88.8</td>
<td>59.0</td>
</tr>
<tr>
<td>September</td>
<td>80.6</td>
<td>49.8</td>
<td>0.8</td>
<td>82.0</td>
<td>51.6</td>
</tr>
<tr>
<td>October</td>
<td>65.9</td>
<td>38.7</td>
<td>1.6</td>
<td>68.0</td>
<td>37.2</td>
</tr>
<tr>
<td>November</td>
<td>40.8</td>
<td>20.0</td>
<td>0.3</td>
<td>56.2</td>
<td>28.9</td>
</tr>
<tr>
<td>December</td>
<td>41.7</td>
<td>17.0</td>
<td>0.3</td>
<td>45.4</td>
<td>21.4</td>
</tr>
<tr>
<td>Total</td>
<td>11.4</td>
<td>12.4</td>
<td>5.0</td>
<td>11.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max °F</td>
<td>Min °F</td>
<td>Precip inches</td>
<td>Max °F</td>
<td>Min °F</td>
</tr>
<tr>
<td>January</td>
<td>43.9</td>
<td>21.5</td>
<td>0.1</td>
<td>52.2</td>
<td>24.6</td>
</tr>
<tr>
<td>February</td>
<td>49.4</td>
<td>24.5</td>
<td>0.0</td>
<td>41.2</td>
<td>15.3</td>
</tr>
<tr>
<td>March</td>
<td>53.0</td>
<td>27.2</td>
<td>0.2</td>
<td>52.9</td>
<td>25.5</td>
</tr>
<tr>
<td>April</td>
<td>59.0</td>
<td>34.0</td>
<td>1.1</td>
<td>65.0</td>
<td>34.5</td>
</tr>
<tr>
<td>May</td>
<td>72.0</td>
<td>44.6</td>
<td>0.8</td>
<td>76.5</td>
<td>44.6</td>
</tr>
<tr>
<td>June</td>
<td>80.1</td>
<td>50.4</td>
<td>2.4</td>
<td>86.5</td>
<td>54.2</td>
</tr>
<tr>
<td>July</td>
<td>94.2</td>
<td>61.1</td>
<td>1.3</td>
<td>90.6</td>
<td>61.8</td>
</tr>
<tr>
<td>August</td>
<td>84.6</td>
<td>56.7</td>
<td>2.2</td>
<td>86.1</td>
<td>59.0</td>
</tr>
<tr>
<td>September</td>
<td>83.3</td>
<td>51.9</td>
<td>1.3</td>
<td>69.5</td>
<td>43.3</td>
</tr>
<tr>
<td>October</td>
<td>65.1</td>
<td>39.1</td>
<td>1.3</td>
<td>62.5</td>
<td>35.9</td>
</tr>
<tr>
<td>November</td>
<td>56.5</td>
<td>29.7</td>
<td>0.5</td>
<td>53.3</td>
<td>26.9</td>
</tr>
<tr>
<td>December</td>
<td>41.6</td>
<td>17.5</td>
<td>0.0</td>
<td>42.2</td>
<td>21.1</td>
</tr>
<tr>
<td>Total</td>
<td>10.0</td>
<td>9.0</td>
<td>11.2</td>
<td>11.5</td>
<td></td>
</tr>
</tbody>
</table>

We installed the weather station in mid-April, 2000. The tipping bucket rain gauge may not accurately measure precipitation received as snow.
Table 1 (continued). Monthly mean maximum (Max) and minimum (Min) temperatures and precipitation (Precip) in inches at the Byers research site, 2000-2011. (Weather station was installed in April, 2000).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>44.6</td>
<td>19.9</td>
<td>0.1</td>
<td>40.8</td>
<td>17.6</td>
<td>0.3</td>
<td>49.8</td>
<td>20.6</td>
<td>0.1</td>
</tr>
<tr>
<td>February</td>
<td>39.7</td>
<td>18.0</td>
<td>0.2</td>
<td>42.8</td>
<td>15.4</td>
<td>0.0</td>
<td>36.1</td>
<td>16.8</td>
<td>0.2</td>
</tr>
<tr>
<td>March</td>
<td>53.7</td>
<td>28.2</td>
<td>0.4</td>
<td>57.2</td>
<td>28.1</td>
<td>0.2</td>
<td>62.8</td>
<td>33.1</td>
<td>0.2</td>
</tr>
<tr>
<td>April</td>
<td>62.4</td>
<td>33.6</td>
<td>2.5</td>
<td>61.4</td>
<td>29.9</td>
<td>0.9</td>
<td>68.3</td>
<td>37.2</td>
<td>1.4</td>
</tr>
<tr>
<td>May</td>
<td>68.4</td>
<td>38.1</td>
<td>1.6</td>
<td>66.0</td>
<td>38.7</td>
<td>3.8</td>
<td>75.8</td>
<td>44.4</td>
<td>0.6</td>
</tr>
<tr>
<td>June</td>
<td>83.6</td>
<td>54.6</td>
<td>1.4</td>
<td>83.3</td>
<td>53.2</td>
<td>0.6</td>
<td>91.0</td>
<td>57.1</td>
<td>0.4</td>
</tr>
<tr>
<td>July</td>
<td>89.1</td>
<td>59.7</td>
<td>2.3</td>
<td>92.9</td>
<td>57.4</td>
<td>3.6</td>
<td>93.4</td>
<td>62.5</td>
<td>1.2</td>
</tr>
<tr>
<td>August</td>
<td>88.8</td>
<td>59.4</td>
<td>1.6</td>
<td>87.3</td>
<td>60.9</td>
<td>1.6</td>
<td>89.7</td>
<td>57.8</td>
<td>0.1</td>
</tr>
<tr>
<td>September</td>
<td>84.2</td>
<td>50.5</td>
<td>0.0</td>
<td>77.8</td>
<td>49.5</td>
<td>1.0</td>
<td>78.6</td>
<td>50.3</td>
<td>1.1</td>
</tr>
<tr>
<td>October</td>
<td>69.5</td>
<td>39.9</td>
<td>0.1</td>
<td>67.0</td>
<td>38.1</td>
<td>0.9</td>
<td>63.4</td>
<td>36.3</td>
<td>0.4</td>
</tr>
<tr>
<td>November</td>
<td>52.3</td>
<td>25.1</td>
<td>0.2</td>
<td>55.3</td>
<td>25.4</td>
<td>0.2</td>
<td>59.6</td>
<td>30.7</td>
<td>0.1</td>
</tr>
<tr>
<td>December</td>
<td>47.8</td>
<td>22.0</td>
<td>0.0</td>
<td>41.1</td>
<td>16.8</td>
<td>0.1</td>
<td>44.3</td>
<td>19.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* We installed the weather station in mid-April, 2000. The tipping bucket rain gauge may not accurately measure precipitation received as snow.
Table 2. Growing season precipitation.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Dates</th>
<th>Precipitation, inches</th>
<th>Stage</th>
<th>Dates</th>
<th>Precipitation, inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn/Sunflowers preplant</td>
<td>July 2000 – April 2001</td>
<td>9.5</td>
<td>Corn preplant</td>
<td>July 2006 – April 2007</td>
<td>8.8</td>
</tr>
<tr>
<td>Corn/Sunflowers growing season</td>
<td>May 2001 – October 2001</td>
<td>9.6</td>
<td>Corn growing season</td>
<td>May 2007 – October 2007</td>
<td>8.2</td>
</tr>
<tr>
<td>Wheat reproductive</td>
<td>April 2002 - June 2002</td>
<td>2.2</td>
<td>Wheat reproductive</td>
<td>April 2008 - June 2008</td>
<td>2.2</td>
</tr>
<tr>
<td>Corn/Sunflowers preplant</td>
<td>July 2001 – April 2002</td>
<td>6.1</td>
<td>Corn preplant</td>
<td>July 2007 – April 2008</td>
<td>7.2</td>
</tr>
<tr>
<td>Wheat vegetative</td>
<td>September 2002 - March 2003</td>
<td>1.1</td>
<td>Wheat vegetative</td>
<td>September 2008 - March 2009</td>
<td>2.1</td>
</tr>
<tr>
<td>Wheat reproductive</td>
<td>April 2003 - June 2003</td>
<td>3.3</td>
<td>Wheat reproductive</td>
<td>April 2009 - June 2009</td>
<td>8.3</td>
</tr>
<tr>
<td>Corn/Sunflowers preplant</td>
<td>July 2002 – April 2003</td>
<td>3.4</td>
<td>Corn preplant</td>
<td>July 2008 – April 2009</td>
<td>11.8</td>
</tr>
<tr>
<td>Corn/Sunflowers growing season</td>
<td>May 2003 – October 2003</td>
<td>9.2</td>
<td>Corn growing season</td>
<td>May 2009 – October 2009</td>
<td>12.9</td>
</tr>
<tr>
<td>Wheat vegetative</td>
<td>September 2003 - March 2004</td>
<td>0.3</td>
<td>Wheat vegetative</td>
<td>September 2009 - March 2010</td>
<td>3.3</td>
</tr>
<tr>
<td>Wheat reproductive</td>
<td>April 2004 - June 2004</td>
<td>2.3</td>
<td>Wheat reproductive</td>
<td>April 2010 - June 2010</td>
<td>5.5</td>
</tr>
<tr>
<td>Corn/Sunflowers preplant</td>
<td>July 2003 – April 2004</td>
<td>3.0</td>
<td>Corn preplant</td>
<td>July 2009 – April 2010</td>
<td>10.2</td>
</tr>
<tr>
<td>Corn/Sunflowers growing season</td>
<td>May 2004 – October 2004</td>
<td>8.6</td>
<td>Corn growing season</td>
<td>May 2010 – October 2010</td>
<td>7.0</td>
</tr>
<tr>
<td>Wheat vegetative</td>
<td>September 2004 - March 2005</td>
<td>1.7</td>
<td>Wheat vegetative</td>
<td>September 2010 - March 2011</td>
<td>0.8</td>
</tr>
<tr>
<td>Wheat reproductive</td>
<td>April 2005 - June 2005</td>
<td>4.3</td>
<td>Wheat reproductive</td>
<td>April 2011 - June 2011</td>
<td>5.3</td>
</tr>
<tr>
<td>Corn preplant</td>
<td>July 2004 – April 2005</td>
<td>5.3</td>
<td>Corn preplant</td>
<td>July 2010 – April 2011</td>
<td>5.6</td>
</tr>
<tr>
<td>Corn growing season</td>
<td>May 2005 – October 2005</td>
<td>8.6</td>
<td>Corn growing season</td>
<td>May 2011 – October 2011</td>
<td>11.5</td>
</tr>
<tr>
<td>Wheat vegetative</td>
<td>September 2005 - March 2006</td>
<td>2.5</td>
<td>Wheat vegetative</td>
<td>September 2011 - March 2012</td>
<td>2.7</td>
</tr>
<tr>
<td>Wheat reproductive</td>
<td>April 2006 - June 2006</td>
<td>1.3</td>
<td>Wheat reproductive</td>
<td>April 2012 - June 2012</td>
<td>2.4</td>
</tr>
<tr>
<td>Corn preplant</td>
<td>July 2005 – April 2006</td>
<td>6.4</td>
<td>Corn preplant</td>
<td>July 2011 – April 2012</td>
<td>7.4</td>
</tr>
<tr>
<td>Corn growing season</td>
<td>May 2006 – October 2006</td>
<td>7.9</td>
<td>Corn growing season</td>
<td>May 2012 – October 2012</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Table 3. Biosolids and fertilizer applications and crop varieties used at the Byers research site, 1999-2009.

<table>
<thead>
<tr>
<th>Year Planted</th>
<th>Date Planted</th>
<th>Crop</th>
<th>Variety</th>
<th>Biosolids Treatment</th>
<th>Nitrogen N Treatment</th>
<th>Fertilizer N Treatment</th>
<th>Treatment Total N</th>
<th>P₂O₅ lbs/acre</th>
<th>Zn lbs/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Early Oct.</td>
<td>Wheat</td>
<td>Halt</td>
<td>2.4</td>
<td>38.4</td>
<td>5</td>
<td>40</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>2000</td>
<td>May</td>
<td>Corn</td>
<td>Pioneer 3752</td>
<td>4</td>
<td>64</td>
<td>5</td>
<td>40</td>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>2000</td>
<td>June</td>
<td>Sunflowers</td>
<td>Triumph 765, 766 (confection type)</td>
<td>2</td>
<td>32</td>
<td>5</td>
<td>40</td>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>2000</td>
<td>9/25/00</td>
<td>Wheat</td>
<td>Prairie Red</td>
<td>Variable</td>
<td>Variable</td>
<td>5</td>
<td>Variable</td>
<td>Variable</td>
<td>20</td>
</tr>
<tr>
<td>2001</td>
<td>5/11/01</td>
<td>Corn</td>
<td>Pioneer 37M81</td>
<td>Variable</td>
<td>Variable</td>
<td>5</td>
<td>Variable</td>
<td>Variable</td>
<td>15</td>
</tr>
<tr>
<td>2001</td>
<td>6/20/01</td>
<td>Sunflowers</td>
<td>Triumph 545A</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>2001</td>
<td>09/17/01</td>
<td>Wheat</td>
<td>Prairie Red</td>
<td>Variable</td>
<td>Variable</td>
<td>5</td>
<td>Variable</td>
<td>Variable</td>
<td>20</td>
</tr>
<tr>
<td>2002</td>
<td>5/11/01</td>
<td>Corn</td>
<td>Pioneer J99</td>
<td>Variable</td>
<td>Variable</td>
<td>5</td>
<td>Variable</td>
<td>Variable</td>
<td>15</td>
</tr>
<tr>
<td>2002</td>
<td>6/28/03</td>
<td>Sunflowers</td>
<td>Stanton</td>
<td>Variable</td>
<td>Variable</td>
<td>5</td>
<td>Variable</td>
<td>Variable</td>
<td>20</td>
</tr>
<tr>
<td>2003</td>
<td>5/10/05</td>
<td>Corn</td>
<td>Triumph 9066</td>
<td>Variable</td>
<td>Variable</td>
<td>5</td>
<td>Variable</td>
<td>Variable</td>
<td>15</td>
</tr>
</tbody>
</table>
Table 3. (continued) Biosolids and fertilizer applications and crop varieties used at the Byers research site, 1999-2009.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Crop</th>
<th>Variety</th>
<th>Biosolids</th>
<th>Fertilizer</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Sept.</td>
<td>Wheat</td>
<td>Yumar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>May</td>
<td>Corn</td>
<td>Pioneer J99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>Sept.</td>
<td>Wheat</td>
<td>Yumar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>May</td>
<td>Corn</td>
<td>Pioneer J99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007</td>
<td>Sept.</td>
<td>Wheat</td>
<td>Yumar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>May</td>
<td>Corn</td>
<td>Pioneer J99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>Sept.</td>
<td>Wheat</td>
<td>Yumar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>May</td>
<td>Corn</td>
<td>Pioneer J99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>Sept.</td>
<td>Wheat</td>
<td>Yumar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>May</td>
<td>Corn</td>
<td>Pioneer J99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2010</td>
<td>Sept.</td>
<td>Wheat</td>
<td>Yumar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>May</td>
<td>Corn</td>
<td>Pioneer J99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>Sept.</td>
<td>Wheat</td>
<td>Snowmass</td>
<td>2</td>
<td>32</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>2012</td>
<td>May</td>
<td>Corn</td>
<td>Triumph 9958</td>
<td>2</td>
<td>32</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>
Table 4. Littleton/Englewood biosolids composition used at the Byers research site, 1999-2012.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids, g kg⁻¹</td>
<td>217</td>
<td>---</td>
<td>210</td>
<td>220</td>
<td>254</td>
<td>192</td>
<td>197</td>
<td>211</td>
</tr>
<tr>
<td>pH</td>
<td>7.6</td>
<td>7.8</td>
<td>8.4</td>
<td>8.1</td>
<td>8.5</td>
<td>8.2</td>
<td>8.8</td>
<td>8.2</td>
</tr>
<tr>
<td>EC, dS m⁻¹</td>
<td>6.2</td>
<td>11.2</td>
<td>10.6</td>
<td>8.7</td>
<td>7.6</td>
<td>7.4</td>
<td>4.5</td>
<td>5.1</td>
</tr>
<tr>
<td>Org. N, g kg⁻¹</td>
<td>50</td>
<td>47</td>
<td>58</td>
<td>39</td>
<td>54</td>
<td>46</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>NH₄-N, g kg⁻¹</td>
<td>12</td>
<td>7</td>
<td>14</td>
<td>16</td>
<td>9</td>
<td>13</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>NO₃-N, g kg⁻¹</td>
<td>0.023</td>
<td>0.068</td>
<td>0.020</td>
<td>0.021</td>
<td>0.027</td>
<td>0.016</td>
<td>0.010</td>
<td>0</td>
</tr>
<tr>
<td>K, g kg⁻¹</td>
<td>5.1</td>
<td>2.6</td>
<td>1.6</td>
<td>1.9</td>
<td>2.2</td>
<td>2.6</td>
<td>2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>P, g kg⁻¹</td>
<td>29</td>
<td>18</td>
<td>34</td>
<td>32</td>
<td>26</td>
<td>28</td>
<td>29</td>
<td>13</td>
</tr>
<tr>
<td>Al, g kg⁻¹</td>
<td>28</td>
<td>18</td>
<td>15</td>
<td>18</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>Fe, g kg⁻¹</td>
<td>31</td>
<td>22</td>
<td>34</td>
<td>33</td>
<td>23</td>
<td>24</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Cu, mg kg⁻¹</td>
<td>560</td>
<td>820</td>
<td>650</td>
<td>750</td>
<td>596</td>
<td>689</td>
<td>696</td>
<td>611</td>
</tr>
<tr>
<td>Zn, mg kg⁻¹</td>
<td>410</td>
<td>543</td>
<td>710</td>
<td>770</td>
<td>506</td>
<td>629</td>
<td>676</td>
<td>716</td>
</tr>
<tr>
<td>Ni, mg kg⁻¹</td>
<td>22</td>
<td>6</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Mo, mg kg⁻¹</td>
<td>19</td>
<td>22</td>
<td>36</td>
<td>17</td>
<td>21</td>
<td>34</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Cd, mg kg⁻¹</td>
<td>6.2</td>
<td>2.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.5</td>
<td>2.2</td>
<td>4.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Cr, mg kg⁻¹</td>
<td>44</td>
<td>17</td>
<td>17</td>
<td>13</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Pb, mg kg⁻¹</td>
<td>43</td>
<td>17</td>
<td>16</td>
<td>18</td>
<td>15</td>
<td>21</td>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>As, mg kg⁻¹</td>
<td>5.5</td>
<td>2.6</td>
<td>1.4</td>
<td>3.8</td>
<td>1.4</td>
<td>1.6</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>Se, mg kg⁻¹</td>
<td>20</td>
<td>16</td>
<td>7</td>
<td>6</td>
<td>17</td>
<td>1</td>
<td>3</td>
<td>0.07</td>
</tr>
<tr>
<td>Hg, mg kg⁻¹</td>
<td>3.4</td>
<td>0.5</td>
<td>2.6</td>
<td>2.0</td>
<td>1.1</td>
<td>0.4</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Ag, mg kg⁻¹</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>15</td>
<td>7</td>
<td>0.5</td>
</tr>
<tr>
<td>Ba, mg kg⁻¹</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>533</td>
<td>7</td>
</tr>
<tr>
<td>Be, mg kg⁻¹</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.05</td>
<td><0.001</td>
</tr>
<tr>
<td>Mn, mg kg⁻¹</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>239</td>
<td>199</td>
</tr>
</tbody>
</table>
Table 4 (continued). Littleton/Englewood biosolids composition used at the Byers research site, 1999-2012.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2012 Corn</th>
<th>Avg.</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids, g kg(^{-1})</td>
<td>170</td>
<td>208</td>
<td>170-254</td>
</tr>
<tr>
<td>pH</td>
<td>8.7</td>
<td>8.3</td>
<td>7.6-8.8</td>
</tr>
<tr>
<td>EC, dS m(^{-1})</td>
<td>3.5</td>
<td>7.2</td>
<td>3.5-11.2</td>
</tr>
<tr>
<td>Org. N, g kg(^{-1})</td>
<td>12</td>
<td>43</td>
<td>12-58</td>
</tr>
<tr>
<td>NH(_4)-N, g kg(^{-1})</td>
<td>2</td>
<td>11</td>
<td>2-16</td>
</tr>
<tr>
<td>NO(_3)-N, g kg(^{-1})</td>
<td>0.003</td>
<td>0.021</td>
<td>0.0068</td>
</tr>
<tr>
<td>K, g kg(^{-1})</td>
<td>0.3</td>
<td>2.3</td>
<td>0.3-5.1</td>
</tr>
<tr>
<td>P, g kg(^{-1})</td>
<td>5</td>
<td>24</td>
<td>5-34</td>
</tr>
<tr>
<td>Al, g kg(^{-1})</td>
<td>1</td>
<td>15</td>
<td>1-28</td>
</tr>
<tr>
<td>Fe, g kg(^{-1})</td>
<td>4</td>
<td>24</td>
<td>4-34</td>
</tr>
<tr>
<td>Cu, mg kg(^{-1})</td>
<td>138</td>
<td>613</td>
<td>138-820</td>
</tr>
<tr>
<td>Zn, mg kg(^{-1})</td>
<td>140</td>
<td>567</td>
<td>140-770</td>
</tr>
<tr>
<td>Ni, mg kg(^{-1})</td>
<td>4</td>
<td>10</td>
<td>4-22</td>
</tr>
<tr>
<td>Mo, mg kg(^{-1})</td>
<td>2</td>
<td>10</td>
<td>2-36</td>
</tr>
<tr>
<td>Cd, mg kg(^{-1})</td>
<td>0.2</td>
<td>2.4</td>
<td>0.2-6.2</td>
</tr>
<tr>
<td>Cr, mg kg(^{-1})</td>
<td>2</td>
<td>16</td>
<td>2-44</td>
</tr>
<tr>
<td>Pb, mg kg(^{-1})</td>
<td>6</td>
<td>10</td>
<td>6-43</td>
</tr>
<tr>
<td>As, mg kg(^{-1})</td>
<td>2.0</td>
<td>1.2</td>
<td>0.05-5.5</td>
</tr>
<tr>
<td>Se, mg kg(^{-1})</td>
<td>12</td>
<td>9</td>
<td>0.07-20</td>
</tr>
<tr>
<td>Hg, mg kg(^{-1})</td>
<td>0.01</td>
<td>1.2</td>
<td>0.01-3.4</td>
</tr>
<tr>
<td>Ag, mg kg(^{-1})</td>
<td>3.5</td>
<td>4.9</td>
<td>0.5-15</td>
</tr>
<tr>
<td>Ba, mg kg(^{-1})</td>
<td>76</td>
<td>205</td>
<td>7-533</td>
</tr>
<tr>
<td>Be, mg kg(^{-1})</td>
<td><0.01</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Mn, mg kg(^{-1})</td>
<td>73</td>
<td>170</td>
<td>73-239</td>
</tr>
</tbody>
</table>
Table 5. Corn grain characteristics for the corn rotation (CFW) at the Byers research site for 2012. **Highlighted parameters** are significant at the 0.10 probability level.

<table>
<thead>
<tr>
<th>Parameter, units</th>
<th>Biosolids</th>
<th>Nitrogen</th>
<th>Probability level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield, bushels/acre</td>
<td>12</td>
<td>16</td>
<td>0.373</td>
</tr>
<tr>
<td>Protein, %</td>
<td>12.1</td>
<td>12.2</td>
<td>0.444</td>
</tr>
<tr>
<td>P, g/kg</td>
<td>6.0</td>
<td>6.1</td>
<td>0.888</td>
</tr>
<tr>
<td>Zn, mg/kg</td>
<td>32</td>
<td>34</td>
<td>0.393</td>
</tr>
<tr>
<td>Cu, mg/kg</td>
<td>3.0</td>
<td>3.3</td>
<td>0.085</td>
</tr>
</tbody>
</table>

Table 6. Soil characteristics for the corn rotation (CFW) at the Byers research site for 2012. **Highlighted parameters** are significant at the 10% probability level.

<table>
<thead>
<tr>
<th>Parameter, units</th>
<th>Depth, inches</th>
<th>Biosolids</th>
<th>Nitrogen</th>
<th>Probability level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABDTPA P, mg kg⁻¹</td>
<td>0-2</td>
<td>39.5</td>
<td>14.3</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>9.9</td>
<td>1.8</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>4-8</td>
<td>1.1</td>
<td>0.01</td>
<td>0.164</td>
</tr>
<tr>
<td></td>
<td>8-12</td>
<td>0.8</td>
<td>0.2</td>
<td>0.383</td>
</tr>
<tr>
<td>ABDTPA Zn, mg kg⁻¹</td>
<td>0-2</td>
<td>4.07</td>
<td>0.89</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>0.35</td>
<td>0.21</td>
<td>0.261</td>
</tr>
<tr>
<td></td>
<td>4-8</td>
<td>0.20</td>
<td>0.33</td>
<td>0.630</td>
</tr>
<tr>
<td></td>
<td>8-12</td>
<td>0.24</td>
<td>0.05</td>
<td>0.132</td>
</tr>
<tr>
<td>ABDTPA Cu, mg kg⁻¹</td>
<td>0-2</td>
<td>7.6</td>
<td>1.8</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>2.0</td>
<td>2.0</td>
<td>0.951</td>
</tr>
<tr>
<td></td>
<td>4-8</td>
<td>2.7</td>
<td>2.6</td>
<td>0.845</td>
</tr>
<tr>
<td></td>
<td>8-12</td>
<td>2.4</td>
<td>2.2</td>
<td>0.269</td>
</tr>
<tr>
<td>pH</td>
<td>0-2</td>
<td>5.8</td>
<td>6.6</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>6.4</td>
<td>6.7</td>
<td>0.246</td>
</tr>
<tr>
<td></td>
<td>4-8</td>
<td>7.3</td>
<td>7.4</td>
<td>0.708</td>
</tr>
<tr>
<td></td>
<td>8-12</td>
<td>7.7</td>
<td>7.7</td>
<td>0.878</td>
</tr>
<tr>
<td>ECE, dS m⁻¹</td>
<td>0-2</td>
<td>0.87</td>
<td>0.56</td>
<td>0.348</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>0.63</td>
<td>0.48</td>
<td>0.540</td>
</tr>
<tr>
<td></td>
<td>4-8</td>
<td>0.44</td>
<td>0.32</td>
<td>0.334</td>
</tr>
<tr>
<td></td>
<td>8-12</td>
<td>0.31</td>
<td>0.26</td>
<td>0.451</td>
</tr>
<tr>
<td>NO₃-N, mg kg⁻¹</td>
<td>0-2</td>
<td>48.7</td>
<td>17.2</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>31.8</td>
<td>17.0</td>
<td>0.195</td>
</tr>
<tr>
<td></td>
<td>4-8</td>
<td>15.4</td>
<td>7.7</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>8-12</td>
<td>8.0</td>
<td>4.3</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td>12-24</td>
<td>13.3</td>
<td>2.2</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td>24-36</td>
<td>17.1</td>
<td>1.5</td>
<td>0.293</td>
</tr>
<tr>
<td></td>
<td>36-48</td>
<td>16.1</td>
<td>2.8</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td>48-60</td>
<td>24.7</td>
<td>3.0</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>60-72</td>
<td>22.1</td>
<td>3.4</td>
<td>0.023</td>
</tr>
</tbody>
</table>
Figure 1. Wheat grain yields for 2012 dryland-wheat-rotation harvests comparing Littleton/Englewood biosolids to commercial fertilizer. Error bars represent the standard error of the mean. In the statistical summary, $LSD_{0.10}$ represents the least significant difference at the 10% probability level and NS indicates non-significant differences. (WF = wheat-fallow and WCF = wheat-corn-fallow rotations).
Figure 2. Wheat grain P concentrations for 2012 dryland-wheat-rotation harvests comparing Littleton/Englewood biosolids to commercial fertilizer. Error bars represent the standard error of the mean. In the statistical summary, $LSD_{0.10}$ represents the least significant difference at the 10% probability level and NS indicates non-significant differences. (WF = wheat-fallow and WCF = wheat-corn-fallow rotations).
Figure 3. Wheat grain Zn concentrations for 2012 dryland-wheat-rotation harvests comparing Littleton/Englewood biosolids to commercial fertilizer. Error bars represent the standard error of the mean. In the statistical summary, \(\text{LSD}_{0.10} \) represents the least significant difference at the 10% probability level and NS indicates non-significant differences. (WF = wheat-fallow and WCF = wheat-corn-fallow rotations).
Figure 4. Wheat grain Cu concentrations for 2012 dryland-wheat-rotation harvests comparing Littleton/Englewood biosolids to commercial fertilizer. Error bars represent the standard error of the mean. In the statistical summary, LSD$_{0.10}$ represents the least significant difference at the 10% probability level and NS indicates non-significant differences. (WF = wheat-fallow and WCF = wheat-corn-fallow rotations).
Figure 5. Soil ABDTPA-extractable P concentration following 2012 dryland-wheat-rotation harvests comparing Littleton/Englewood biosolids to commercial N fertilizer. Error bars represent the standard error of the mean. In the statistical summary, LSD$_{0.10}$ represents the least significant difference at the 0.10 probability level and NS indicates non-significant differences.

Statistical summary by soil depth:

- **0-2 inches**
 - LSD$_{0.10}$
 - Rotations NS
 - Treatment NS
 - Rot. X Treat. NS

- **2-4 inches**
 - LSD$_{0.10}$
 - Rotations NS
 - Treatment NS
 - Rot. X Treat. 2.8

- **4-8 inches**
 - LSD$_{0.10}$
 - Rotations NS
 - Treatment NS
 - Rot. X Treat. NS

- **8-12 inches**
 - LSD$_{0.10}$
 - Rotations NS
 - Treatment NS
 - Rot. X Treat. NS
Figure 6. Soil ABDTPA-extractable Zn concentration following 2012 dryland-wheat-rotation harvests comparing Littleton/Englewood biosolids to commercial N fertilizer. Error bars represent the standard error of the mean. In the statistical summary, LSD$_{0.10}$ represents the least significant difference at the 0.10 probability level and NS indicates non-significant differences.
Figure 7. Soil ABDTPA-extractable Cu concentration following 2012 dryland-wheat-rotation harvests comparing Littleton/Englewood biosolids to commercial N fertilizer. Error bars represent the standard error of the mean. In the statistical summary, LSD$_{0.10}$ represents the least significant difference at the 0.10 probability level and NS indicates non-significant differences.
Figure 8. Soil saturated-paste electrical conductivity (EC) following 2012 dryland-wheat-rotation harvests comparing Littleton/Englewood biosolids to commercial N fertilizer. Error bars represent the standard error of the mean. In the statistical summary, LSD_{0.10} represents the least significant difference at the 0.10 probability level and NS indicates non-significant differences.

Statistical summary by soil depth:

0-2 inches
LSD_{0.10}
Rotations NS
Treatment 0.05 Rot. X Treat. NS

2-4 inches
LSD_{0.10}
Rotations NS
Treatment NS Rot. X Treat. NS

4-8 inches
LSD_{0.10}
Rotations NS
Treatment NS Rot. X Treat. NS

8-12 inches
LSD_{0.10}
Rotations NS
Treatment NS Rot. X Treat. NS
Figure 9. Soil saturated-paste pH following 2012 dryland-wheat-rotation harvests comparing Littleton/Englewood biosolids to commercial N fertilizer. Error bars represent the standard error of the mean. In the statistical summary, LSD$_{0.10}$ represents the least significant difference at the 0.10 probability level and NS indicates non-significant differences.

Statistical summary by soil depth:

<table>
<thead>
<tr>
<th>Depth, inches</th>
<th>Biosolids</th>
<th>Nitrogen fertilizer</th>
<th>Rotations</th>
<th>Treatment</th>
<th>Rot. X Treat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2 inches</td>
<td>LSD$_{0.10}$</td>
<td>Rotations NS</td>
<td>Treatment NS</td>
<td>Rot. X Treat. NS</td>
<td></td>
</tr>
<tr>
<td>2-4 inches</td>
<td>LSD$_{0.10}$</td>
<td>Rotations NS</td>
<td>Treatment NS</td>
<td>Rot. X Treat. 0.2</td>
<td></td>
</tr>
<tr>
<td>4-8 inches</td>
<td>LSD$_{0.10}$</td>
<td>Rotations 0.4</td>
<td>Treatment NS</td>
<td>Rot. X Treat. NS</td>
<td></td>
</tr>
<tr>
<td>8-12 inches</td>
<td>LSD$_{0.10}$</td>
<td>Rotations 0.2</td>
<td>Treatment NS</td>
<td>Rot. X Treat. 0.1</td>
<td></td>
</tr>
</tbody>
</table>
Figure 10. Soil NO$_3$-N concentrations following 2012 dryland-wheat-rotation harvests comparing Littleton/Englewood biosolids to commercial N fertilizer. Error bars represent the standard error of the mean. In the statistical summary, LSD$_{0.10}$ represents the least significant difference at the 0.10 probability level and NS indicates non-significant differences.