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■ Abstract The Japanese beetle,Popillia japonicaNewman, an introduced scarab,
has become the most widespread and destructive insect pest of turf, landscapes, and
nursery crops in the eastern United States. It also damages many fruit, garden, and
field crops. This review emphasizes recent research on the beetle’s biology and man-
agement. Adults feed on leaves, flowers, or fruits of more than 300 plant species.
Adaptations mediating their host finding, dietary range, mating, and oviposition are
discussed. We also address abiotic and biotic factors affecting population dynamics of
the root-feeding larvae. Japanese beetle grubs are widely controlled with preventive
soil insecticides, but options for remedial control of adults and larvae presently are
limited. Advances in understanding host plant resistance, entomopathogens, and other
biorational approaches may provide more options for integrated management. Despite
ongoing regulatory efforts, the Japanese beetle remains a threat as an invasive species.
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INTRODUCTION

The Japanese beetle (JB),Popillia japonicaNewman (Coleoptera: Scarabaeidae)
was first discovered in North America in 1916 during a routine inspection of a
nursery near Riverton, New Jersey (47). As an introduced pest, it proved to be
spectacularly successful. Despite concerted federal and state efforts to eradicate
it, and then to limit its spread, the JB progressively extended its range. It now is
the most widespread and destructive insect pest of turf and landscape plants in the
eastern United States (144, 190). More than $450 million is expended each year for
direct control costs and for renovating or replacing damaged turf and ornamental
plants (181). The JB also damages fruit crops, soybeans, maize, and other garden
or field crops (46). Both larvae and adults are targets for substantial insecticide
usage, especially on home lawns, golf courses, and in urban landscapes (144, 146).

Recognizing the potential impact ofP. japonicaon American agriculture, the
former U.S. Bureau of Entomology established the Japanese Beetle Laboratory
in 1917 to study the biology of this pest in its new environment and to develop
methods for its control (47). Much of the early research on biological, cultural, and
chemical control of the JB was conducted by USDA entomologists affiliated with
that laboratory, often collaborating with other federal and state agencies. As the
pest expanded its range, work also was conducted at state agricultural experiment
stations and other universities.

The JB also is a valuable model for research in insect-plant relationships.
Japanese beetles, being highly polyphagous, mobile, and relatively long-lived,
offer insights on the behavior, physiology, and nutritional ecology of herbivores
that are dietary generalists as adults. Root-feeding JB larvae are useful subjects
for studies concerning the spatial ecology of soil insects, their interactions with
natural enemies, and adaptations for below-ground herbivory.

The substantial body of research on JB conducted before 1975 was summarized
by W.E. Fleming in a series of landmark reviews (44–47). Our review emphasizes
more recent work on the beetle’s ecology, and its association with host plants and
natural enemies, as well as present and future management strategies.

HISTORY AS A PEST; CURRENT GEOGRAPHIC
DISTRIBUTION

It is uncertain exactly when or how the JB was first introduced into the United
States. It probably arrived about 1911, possibly as grubs in soil clinging to the
rhizomes of Japanese iris (38). Previously, the JB occurred only on the main islands
of the Japanese archipelago (47), where it was regarded as a minor agricultural
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pest, probably because much of the terrain is unsuitable for larval development,
and because natural enemies are adequate to keep its populations low (25). In the
eastern United States, however, the JB found a new and favorable environment,
with expanses of lush turf and pasture grasses for the development of its root-
feeding larvae, hundreds of species of adult food plants and, at that time, no native
natural enemies (44, 47). The pest increased in numbers and spread naturally, and
inadvertently by human commerce, into new areas. By 1998, the JB was established
in all states east of the Mississippi River except for Florida, as well as parts of
Wisconsin, Minnesota, Iowa, and Nebraska, and into southern Ontario and Quebec,
Canada (132). Three infestations in California—in Sacramento (1961–64), San
Diego (1973–75), and near Sacramento (1983–85)—were chemically eradicated
(23, 190). Local outbreaks ofP. japonicain northern Japan since the mid-1970s
have been attributed to increased cultivation of grassy areas (11).

Elsewhere in the world, the JB is established on Terceira Island (Azores,
Portugal), where it escaped from a United States air base in the early 1970s (95).
Although its endemic or introduced range has been reported to include northeast-
ern China, the Hunan Province of China, the Korean Peninsula, northern India,
and the South Kuril region of Sakhalin, Russia (166), these records apparently
are based upon misidentifications, and its establishment on the Asian mainland is
questionable (4).

In North America, the JB remains the target of quarantines restricting interstate
shipment of nursery stock with soil and movement of aircraft from regulated
airports to California and six other western states, as well as British Columbia
(133). The European and Mediterranean Plant Protection Organization lists it as a
quarantine pest (166), and it has similar status with other international regulatory
organizations (145). Temperature and soil moisture likely are important factors
limiting the pest’s potential spread into new areas (46). A modified Match Index
model (4) predicts that most of continental Europe, the United Kingdom, and
Ireland are climatically suitable, as are parts of the Caucasus region, eastern central
China, and the Korean Peninsula. In the Southern Hemisphere, parts of Australia,
New Zealand, South Africa, and South America also are suitable. Establishment
of the JB in these areas, or in the western United States, could result in enormous
economic loss.

BIOLOGY AND ECOLOGY

Seasonal Biology

The JB is univoltine throughout most of its range in the United States (46). In
southern Ontario, northern New England, and the Adirondack and western regions
of New York, or in unusually cool years in southern New England, a portion of the
population may take 2 years to complete a generation (187, 190). Appearance of
adults and timing of subsequent oviposition and larval development vary by latitude
and from year to year (46). Emergence typically begins in May in southern Georgia,
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early to mid-June in northern Georgia, eastern North Carolina, and Kentucky
(56, 131, 156, 157), but not until July in eastern Massachusetts (187). Males begin
to emerge a few days earlier than females (46, 156). The sex ratio of adults emerged
in the field is about 1:1 (156).

Virgin females normally are inseminated as they first emerge from the soil (100).
Emerging females carry an average of 20 mature eggs and begin to lay eggs soon
after mating, probably before feeding (155). After this initial oviposition, which
lasts for about 3 days (155), females fly to host plants, often ones upon which
other adults have aggregated, to feed and remate (14, 46, 123). Females alternate
between periods of feeding and oviposition, typically entering the soil a dozen
or more times and depositing 40–60 eggs over a 4–6 week adult life span (46).
Eggs are laid singly, generally in the upper 7.5 cm of soil. When plants, which
the beetles have been feeding on, are near a site that is suitable for oviposition,
departing females tend to oviposit in that vicinity (35, 46). Otherwise, they may
disperse to more suitable sites for oviposition (159). These typically are areas
with moderate to high soil moisture so long as it does not exceed field capacity
(5, 149, 155), moderate soil texture (5, 46, 155, 158), sunlight, and short grass cover
(149).

Eggs hatch in about 10–14 days; development of the first and second instars
requires about 2–3 weeks and 3–4 weeks, respectively (46). Thus, most grubs are
third instars by mid-September. Eggs and first instars are sensitive to temperature
and moisture extremes, especially desiccation (5, 46, 158). Variation in their sur-
vival in heterogeneous soils is believed to be a major determinant of spatial and
temporal fluctuations in population density (5, 35, 46, 159). Older larvae are less
susceptible to environmental stress, partly because of their ability to move down-
ward in the soil profile (183).

The grubs feed well into October and most are nearly full-sized before the
onset of winter. They are susceptible to freezing, with a supercooling point of
about−7◦C (74). They move deeper into the soil in late autumn. They overwinter
5–15 cm below the surface, although a few may be 20–25 cm deep. Movement
upward in the soil profile usually begins in March as soil temperatures rise above
10◦C (46). The grubs feed for another 4–8 weeks, then go slightly deeper and
form an earthen cell in which to pupate (46, 187). The prepupal stage occurs in
May and lasts about 10 days. The pupal stage lasts 7–17 days, and teneral adults
may remain in the pupal cell for 2–14 days before emerging from the soil (46).
In northern states where a portion of the population has a 2-year life cycle, those
individuals overwinter as second and third instars during the first and second
winters, respectively (187).

Pheromonal Communication

SEX PHEROMONE Virgin female JB emerging from the soil are highly attractive to
males, particularly early in the summer (46). Field studies with tethered beetles,
beetle-baited traps, and severed body portions confirmed that unmated females
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emit a volatile sex pheromone that is produced in the abdomen (100). Males do
not attract other males (100). Ladd (100) showed that females cease to produce
the attractant shortly after mating, and subsequent tests with mated females gave
no indication of recommencement of pheromone production (80).

The attractant compound subsequently was isolated from virgin females and ten-
tatively identified as (Z)-5-(1-decenyl)dihydro-2(3H)-furanone (180). However,
this racemic lactone did not attract male beetles in the field and even inhibited
their response to virgin females (180). Preparation and field testing of its two
enantiomeric forms confirmed that the (R)-enantiomer (japonilure) was active,
whereas admixtures of as little as 1% of the (S)-enantiomer greatly inhibited male
response (180). Synthetic japonilure (39) acts synergistically with food-type lures
to increase trap captures (109, 110).

Histological and morphological studies revealed female-specific glands com-
posed of epithelial cells lining the inner surfaces of anal plates and two apical
sternites. Numerous pores connect these cells to the cuticle surface (174). The sex
pheromone was detected by GC-MS in extracts from these glands (174). Unlike
northern and southern masked chafers (Cyclocephala borealisandCyclocephala
lurida, respectively) in which the adult female sex pheromone is produced in both
sexes of larvae (70), hexane extracts of JB grubs did not attract JB orCyclocephala
spp. males (69; D.A. Potter & K.F. Haynes, unpublished data).

Comparative studies with the Osaka beetle (Anomala osaka), a scarab that shares
a common habitat withP. japonicain Japan, revealed an interesting mechanism
of mutual inhibition. The two species use opposite enantiomeric forms of the chi-
ral pheromone (114). Osaka beetles produce and respond to (S)-japonilure, the
activity of which is completely inhibited by as little as 5% (R)-japonilure. Chi-
ral gas chromatography with an electroantennogram detector showed that males
of both species have olfactory receptor neurons specific for each enantiomeric
form of the lactone (113). Antennae of males of each species have only a single
pheromone-binding protein that recognizes both enantiomers to a similar degree
(114). However, both species possess olfactory receptor neurons, colocalized in
a single sensillum, that are specific to either enantiomer (196). In the JB, the re-
ceptor neuron tuned to (R)-japonilure is characterized by a large action potential
amplitude, whereas a small-spiking receptor is tuned to the behavioral antago-
nist, (S)-japonilure. The opposite pattern occurs in the Osaka beetle. Thus, chiral
discrimination evidently is achieved through the specificity of ligand-membrane
receptor interactions (196). This mechanism provides species-specific chemical
signals for the two sympatric species. Ultrastructure of the pheromone-detecting
sensilla placodea and morphological properties of their olfactory neurons have
been described (79).

PUTATIVE AGGREGATION PHEROMONE On the basis of electroantennogram re-
sponses to male extracts (1) and beetles’ response to conspecifics tethered on
plants (75), Iwabuchi & Takahashi (75) proposed that male JB release an aggre-
gation pheromone that attracts both sexes. Field studies, however, have failed to
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support the presence of a male attractant (80, 100). More recently, it was shown
that both sexes of JB are strongly attracted to blends of plant volatiles released
from beetle-damaged leaves (119, 122–124). This phenomenon may explain the
aggregative behavior without invoking a beetle-produced aggregation pheromone.
Such responses may facilitate mate location on host plants because, once they are
mated, females themselves do not seem to attract flying males although they may
mate multiple times (100, 123).

Mating Behavior

Japanese beetles engage in both polygyny and polyandry (14, 46). Males attempt
to copulate with virgin females as they emerge from the ground, and females also
remate on plants where they feed between periods of oviposition (46). Ladd (99),
working with chemosterilants, showed that sperm contributed by a female’s last
mate were used to fertilize her eggs until her next mating and that sperm from a
single mating remain viable for at least several weeks. Sequential pairings of fe-
males with normal or sterilized males confirmed that there is sperm displacement
(99). Barrows & Gordh (14), who described courtship, copulatory, and postcopu-
latory behavior in JB, noted that males often remain mounted for up to 2 h after
copulation. This behavior likely represents mate guarding in response to sperm
competition. Males on leaves may mount a mating or postcopulatory pair and,
after pushing and grappling, displace the original male (authors’ observations).
The fact that repeated mating is unnecessary for continued production of fertile
eggs (102) suggests that polyandry in JB reflects selection for increased variability
in offspring, rather than depletion of sperm reserves in females.

Nutritional Ecology and Determinants of Host Range

Japanese beetles are among the most polyphagous of plant-feeding insects. Adults
feed on foliage, fruits, or flowers of>300 species of wild and cultivated plants
in 79 families, especially in the Aceraceae, Anacardiaceae, Ericaceae, Fagaceae,
Gramineae, Hippocastanaceae, Juglandaceae, Lauraceae, Leguminosae, Lilaceae,
Lythraceae, Malvaceae, Onagraceae, Plantanaceae, Polygonaceae, Rosaceae,
Salicaceae, Tiliaceae, Ulmaceae, and Vitaceae (46, 103, 105). Feeding on different
species or cultivars of acceptable host plants can dramatically affect the beetles’
longevity and fecundity (77, 102, 169).

HOST LOCATION BY ADULTS Olfaction is important in host location by JB (2, 46)
and may also be important in their discrimination between preferred and nonpre-
ferred plants (2). Many volatile compounds with floral or fruit-like character are
attractive (45), with the most effective known lure being a 3:7:3 blend of phenethyl
propionate, eugenol, and geraniol (111). As with all of the earlier “food-type”
lures (45), this blend was identified and refined by field-screening without regard
to whether the component compounds are present in preferred host plants, or play
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a role in host location. Notably, geraniol, phenethyl propionate, and eugenol have
not been found in volatile blends from several preferred host plants (119, 121–124).

Loughrin et al. (124) compared the volatile aroma compounds emitted by intact
leaves of crabapple (Malusspp.) cultivars that differ markedly in susceptibility to
JB. Although some differences in yields of individual compounds were noted, the
relative attractiveness of the cultivars, as determined by a short-range pitfall assay,
was not related to their susceptibility in the field (169). Indeed, leaves of some
resistant cultivars were at least as attractive as foliage from highly susceptible
ones. Similarly, intact leaves of two resistant maple species,Acer rubrumand
Acer saccharinum, were as attractive as those of the susceptible speciesAcer
palmatumandAcer platanoides, and the species’ constitutive volatile blends were
generally similar across resistance groupings (122). These studies suggest that JBs
are attracted to a wide array of plants, regardless of their acceptability as hosts.

Japanese beetles exploit feeding-induced volatiles as aggregation kairomones
(119, 122, 123). Detached crabapple leaves that had been damaged overnight by JB
or fall webworms attracted more JB than did undamaged or artificially damaged
leaves (119). JB-damaged maple leaves were more attractive than undamaged
leaves (122). Attraction to induced volatiles was confirmed in field studies in which
grapevines that had been damaged overnight by JB recruited 10–20 times more
beetles than did intact vines. This occurred even when the intact vines were “baited”
with a mesh bag containing 30 JB of mixed sex (123). For dietary generalists, plant
odors induced by the feeding of conspecifics may be more reliable indicators of
host suitability than are volatiles released constitutively from plants (119).

Volatiles induced by JB feeding on host leaves are typically complex mixtures
of terpenoids, aliphatics, and aromatics, as compared with the relatively low lev-
els of less complex volatile blends emitted by intact leaves of the same plants
(119, 121–123). Many of the compounds released by skeletonized leaves were
either floral or fruit-like in character. Odor induction from JB-damaged leaves oc-
curred in a delayed manner (119, 121). Experiments with beetle-damaged grape
plants showed that release of most compounds followed a diurnal pattern, with the
period of peak emission from 1200 to 1500 hours, which coincides with the pe-
riod of the adults’ greatest flight and feeding activity (92). During peak emission,
volatile production from JB-damaged vines was about 50 times higher than that
of undamaged vines. Field trapping with single compounds and blends of com-
pounds typical of those released by intact or insect-damaged angiosperm leaves
suggested that JB are attracted to many structurally dissimilar plant volatiles,
and as the complexity of the volatile blend increases, so does its attractiveness
(120).

DETERMINANTS OF HOST PLANT SUITABILITY FOR ADULTS The fact that JB are at-
tracted to a range of plants regardless of their suitability suggests that acceptance
or rejection of hosts occurs mainly in response to stimuli at the leaf surface. Sev-
eral ubiquitous plant sugars, including sucrose, maltose, fructose, and glucose,
are phagostimulants for JB (101). Their presence causes the beetles to consume
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substrates such as agar/cellulose media or glass/fiber filters (78, 101). Adults show
no response to sorbitol (101), a polyhydric alcohol that is widespread in Rosaceae,
which includes many favored hosts. Comparison across a range of susceptible or
resistant plant species revealed no consistent correlation between host suitability
and levels of leaf toughness, nitrogen, water content, sugars, protein-binding ca-
pacity, or saponins (77). Effects of supplemental dietary potassium and sodium
were studied by topically treating leaves with salt solutions. Survival and fecundity
generally were lower on treated foliage (171).

Studies with JB support the view that host range in dietary generalists is con-
trolled mainly by the presence of deterrents in nonhost plants. The beetles are
deterred by cucurbitacins, the bitter triterpenes characteristic of cucurbits (175).
Neriifolin, a cardenolide found in yellow oleander (Thevetia thevetiodes) is a strong
antifeedant (153). Keathley et al. (78) showed that leaves of normally resistant
Bradford callery pear (Pyrus calleryana) could be rendered palatable and suitable
as food by freezing and thawing or other manipulations that induced enzymatic
tissue browning. This phenomenon evidently resulted from decompartmentaliza-
tion and enzymatic degradation of feeding deterrents, probably phenolics. Pheno-
lic glycosides were implicated in resistance of willows,Salix spp., to JB (140).
The beetles are deterred by the latex secretions of milkweed,Asclepias syriaca,
but will consume the leaves if the plants’ laticiferous defense is experimentally
disabled by vein cutting (40). Stinging trichomes of two plant species,Urtica
dioica and Laportea canadensis, did not deter or interfere with feeding by JB
(179).

Feeding deterrents may also determine variation in resistance to JB among
closely related plant species or cultivars. Feeding intensity, as measured by adult
fecal production, on various taxa ofPrunusdecreased exponentially as endoge-
nous foliar cyanide potential increased (143). The cyanogenic glycoside prunasin
and two other compounds, herniarin and coumarin, that occur in resistantPrunus
taxa were potent antifeedants for JB in artificial diet (143). Other endogenous al-
lelochemicals found in rosaceous plants may be stimulatory, inhibitory, or neutral
(142). No significant relationship was found between total phenolic content in
foliage of crabapple (Malusspp.) cultivars and resistance to JB (49). When eight
individual phenolics present inMaluswere tested in artificial diets, however, phlo-
ridzin, phloretin, naringenin, and catechin were antifeedants, whereas quercetin
and rutin were feeding stimulants (49). Analysis of endogenous foliar phenolics,
followed by stepwise multiple regression, indicated that phloridzin is the phenolic
most closely associated with resistance ofMalusto JB (50).

Earlier reports (46) of narcotic effects and paralysis of JB following feeding on
zonal geranium (Pelargonium× hortorum) recently were confirmed (147). Early
claims that castorbean (Ricinus communis) is acutely toxic and effective as a
trap crop were experimentally discredited (46). Despite anecdotal accounts that
flowers of bottlebrush buckeye (Aesculus parviflora) are toxic (46), we found that
adults readily consume them with no adverse effects (D.W. Held & D.A. Potter,
unpublished data).
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PHYSIOLOGICAL AND BEHAVIORAL ADAPTATIONS FOR POLYPHAGY Ahmad (3)
showed that the gut microsomal cytochrome P450 monooxygenase system (P450)
of adult JB is rapidly induced, attaining maximal level within 24 h of feeding.
Laboratory-simulated polyphagy and especially natural polyphagy on field hosts
produced much higher levels of P450 enzymes than did single-plant feeding. This
system likely provides an effective biochemical defense against the many sec-
ondary compounds present in the JB’s broad range of host plants.

Potter & Held (147) tested the beetles’ capacity for food-aversion learning
using geranium flowers, which, when consumed, cause rapid paralysis generally
lasting for 12–16 h (see above). Naive females strongly preferred geranium petals
over foliage of linden,Tilia cordata, a highly suitable host. Surviving experienced
females maintained this preference despite undergoing repeated bouts of paralysis
and reduced fecundity. JB have shown some potential for habituation to a feeding
deterrent. In laboratory tests, beetles exposed for 4 h per day to linden foliage
treated with an initially deterrent rate of neem extract showed increased acceptance
of treated foliage over successive days (71).

FACTORS AFFECTING FLIGHT AND ADULT FEEDING ACTIVITY Flight activity is
greatest on clear days when temperature is between 29◦ and 35◦C, relative humi-
dity is>60%, wind is<20 km/h, and solar radiation is>0.6 Langleys/min (46, 95).
Flight is strongly depressed by overcast or windy conditions and by rainfall
(46, 95, 187). Adults feed most actively from mid-morning to late afternoon (92).
Beetles also feed substantially in evening (1800–2200 hours) and sparingly thro-
ughout the night and early morning so long as ambient temperature is>15◦C
(92).

Roses planted in full sunlight sustained more foliar damage than did exper-
imentally shaded plants (162). Shaded plants contained lower concentrations of
foliar sugars, which act as phagostimulants, and may also have been less appar-
ent or accessible to host-seeking adults. Despite their proclivity to attack plants
growing in sunlight (46, 162), individual JB often move to abaxial leaf surfaces or
shade patches during warm periods of the day (92). They are capable of physio-
logical thermoregulation, adjusting thoracic temperature by endogenous heat pro-
duction or evaporative cooling (92, 138). Minimum thoracic temperature for flight
is about 27◦C (92). As ambient temperature warms from dawn through late morn-
ing, beetles’ response to disturbance changes from falling at<23◦C to flying at
>25◦C (92).

Japanese beetles usually begin feeding at the top of a plant, regardless of its
height (46). Rowe & Potter (161) showed that defoliation by JB was much greater
in the upper canopy of linden trees (Tilia cordata) than on sun-exposed or shaded
lower-canopy leaves. This pattern, however, could not be explained by differences
in foliar toughness, nutrients (nitrogen, water, sugars), or protein-binding capac-
ity, nor did the beetles discriminate, out of spatial context, between leaves from
different canopy zones. Clonal grape plants presented on poles in a vertical array
sustained similar, height-stratified damage, which suggests that visual orientation
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to a host’s silhouette, rather than nutritional factors, accounts for the JB’s initial
attraction to the tops of trees (161). Once consumed, upper leaves release damage-
induced volatiles, attracting additional JB (123).

LARVAL FEEDING ECOLOGY JB larvae, like adults, are polyphagous (46), but they
tend to occur as facultative monophages because their limited mobility restricts
them to plant roots where the female deposits her eggs. Roots of a variety of
grasses, weeds, garden and nursery crops, and ornamental plants are consumed
(31, 46, 148, 167). Larval feeding is stimulated by various plant sugars (104). The
larval gut is alkaline (173), and its P450 activity is inducible, becoming higher
under facultative polyphagy than under monophagy (3). The gut contains prote-
olytic enzymes that can be inhibited, in vitro, with serine proteinase inhibitors
(19). Chronic ingestion of a soybean trypsin inhibitor resulted in elevated larval
mortality (19). Third instars oriented to seeds of wheat or maize in the soil (18).
Third instars will develop to pupation on an artificial diet based on lima beans and
casein (84).

MANAGEMENT

Management of JB is complex because the adults and grubs cause different types
of damage. Because the adults are so mobile, controlling one life stage will not
necessarily preclude problems with the other. The pest’s destructive potential has
led to extensive efforts to develop biological, chemical, and other methods for its
control. Fleming (47) summarized integrated control studies prior to 1974, so we
will emphasize more recent research.

Sampling, Spatial Distribution, Damage Thresholds

Assessment of JB grub populations requires sampling of soil and roots, often with
a spade, golf cup cutter, or a motorized sod cutter (144). Larval populations are
typically aggregated (34). Distributions of all instars in turf were best fitted by
the negative binomial distribution (135). Extensive sampling of fairways on one
central New York golf course suggested that patches with perennially high JB
grub densities tended to occur near plants that attracted adult feeding aggrega-
tions, whereas low-density patches were correlated with high soil organic mat-
ter (35). Other factors positively influencing site suitability include close mowing
(149), moist, well-drained, moderately textured soils (5, 155), and possibly sunlight
(35, 162).

Dalthorp et al. (34) compared several methods of taking advantage of spatial
autocorrelation to estimate local population densities of JB grubs on golf course
fairways. Directional kriging, a geostatistical algorithm for estimating local means
as weighted averages of samples, provided more accurate and consistent estimates
than use of moving averages or inverse distances. Sequential sampling plans for
the grubs have been proposed based upon common Ks from the negative binomial
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distribution (134). For turf managers, however, extensive sampling tends to be
prohibitively time consuming and destructive.

Practical application of sampling for JB larvae is limited in that damage thresh-
olds vary across grass species, soil types, soil moisture levels, and management
regimes (30–32, 106). Defoliation of grapevines by natural populations in Virginia
did not significantly reduce fruit quality, yield, or shoot growth (16). However,
damage thresholds or impacts of the adults’ feeding on growth or physiology of
woody landscape plants have not been quantified.

Attractants and Trapping

The JB is attracted to a variety of volatile oils with floral or fruit-like charac-
ter (148). Field-screening for more effective lures was carried on for many years
(45, 47), culminating in development of a highly attractive food-type lure, a 3:7:3
mixture of phenethyl propionate, eugenol, and geraniol (111). Use of this three-
part mixture with japonilure, the synthetic sex pheromone, provides significantly
greater trap captures than the sum of the captures with either lure singly (110).
Configuration of the standard mechanical trap was also extensively tested and
refined (45, 80), and modifications that may increase trap efficiency have been
evaluated (8). Trap yields increased when traps were emptied daily, possibly be-
cause the odor of decomposing beetles is repellent or masks the lure activity
(9). Sampling statistics (e.g., mean-variance relationships) for JB caught in traps
baited with food-type lures, japonilure, or a combination of both lures have been
determined (6).

The value of lures and traps for plant protection or area-wide suppression of
JB populations has long been debated (47, 80). Gordon & Potter (56, 57) found
that use of single traps or small-scale multiple trap arrangements did not prevent
or reduce damage to nearby landscape plants, nor did it reduce larval densities in
surrounding turf. In fact, defoliation was much greater when traps were present
on a site. Mass trapping was credited with reducing small, recently established, or
isolated infestations under some circumstances (e.g., 45, 47, 194).

Traps probably are most useful for monitoring populations, detecting new in-
festations, or for mass collecting beetles for research. California annually deploys
10,000 traps (41) in their JB detection programs. The ability of traps to detect
isolated infestations in Oregon and California was a key to successful eradication
efforts (9). Traps are also an important component of the Japanese Beetle Harmo-
nization Plan (133), which regulates shipment of nursery crops from infested states
to the western United States and Canada. Absence of JB in survey traps operated
in nurseries allows certification of plants as being free of JB grubs and suitable for
shipment. Nursery fields in counties of Michigan and Ohio with the highest adult
catches were most likely to be infested with JB grubs (167). Modified traps might
also be used to infect large numbers of adult JB with fungi (e.g.,Metarhizium
anisopliae) or other entomopathogens, with subsequent autodissemination into
larval habitats (86, 95, 96).
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Host Plant Resistance

RESISTANCE TO ADULTS Fleming (46) classified 435 plant species in 95 families
into four categories ranging from plants for which there is no record of JB feeding,
to ones that are highly susceptible. These ratings were based upon general field
observations and anecdotal accounts. Laboratory leaf disk assays, however, showed
considerable variation in feeding response among plants classified in the historical
lists as either favored hosts or as minor or nonhost species (103, 105).

Replicated field trials, together with laboratory assays, have revealed significant
variation in susceptibility to JB among taxa of birch (151), elm (128), flowering
crabapple (150, 151, 168, 169), linden (129, 150), and soybean (62). Significant
resistance, however, has not been found in roses (150).

RESISTANCE TO GRUBS Larvae consume roots of all common cool-season turf-
grasses, as well as various lawn weeds (30, 31, 33, 148). Third instars consistently
preferred perennial ryegrass [Lolium perenne] over other turfgrasses in choice
tests (29). Turfgrasses can tolerate substantial root feeding in the absence of other
stresses (30, 32, 33). Recovery of grub-damaged grasses is enhanced by soil mois-
ture and remedial N fertilization (32, 106).

Infection of perennial ryegrass or fescues by fungal endophytes (Neotyphodium
spp.) enhances resistance to certain stem- and leaf-feeding insect pests (17). En-
dophyte effects on JB grubs, however, are equivocal. Although low levels of
pyrrolizidine or ergot alkaloids, similar to those occurring in roots of endophytic
tall fescue [Festuca arundinacea], deterred feeding by third instars on agar-based
medium (61, 141), such grubs did not discriminate between endophytic and nonen-
dophytic tall fescue in choice tests (29). Feeding in endophytic field plots did not
adversely affect larval survival or weight gain, or fecundity of JB females that
emerged from the turf (36, 148). Endophytes may, however, have subtle sublethal
effects. For example, grubs fed endophytic fescue grasses were rendered more
susceptible to entomopathogenic nematodes (61). In contrast, grubs feeding in
endophytic versus nonendophytic perennial ryegrass were equally susceptible to
milky disease (191).

Mass Sterilization

Both sexes of JB can be sterilized by topical application or fumigation in chemoster-
ilants (99), or by exposure to gamma irradiation (47). Chemosterilization of male
beetles was cumulative, permanent, and did not reduce mating competitiveness.
Replacing normal males with sterilized ones in laboratory pairings caused a rapid
decline in production of viable eggs until only infertile ova were produced. Vi-
ability of eggs was restored when females remated with a normal male. Thus,
the fertility of eggs was dependent on whether a female’s last mating partner was
normal or sterile (99).

The feasibility of using releases of sterile males to stabilize or reduce JB pop-
ulations in isolated or newly infested areas was tested against a small, natural
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infestation inhabiting an isolated valley in eastern Tennessee (107). More than
235,000 sterilized males were released weekly from June to mid-August in two
successive summers. Ratios of sterile to normal males increased progressively
and fertility of field-collected females declined, but these effects did not occur
early enough in either summer to suppress the native population. Dependence on
field-collected beetles prevented the release of adequate numbers of sterile males
earlier in the summer. Release of sterile males has not been further explored as a
management strategy.

Cultural Control

Females seek moist sites for egg laying, so withholding irrigation during peak bee-
tle flight may help to reduce grub populations in turf (149). In contrast, irrigation
or rainfall in late summer and autumn promotes recovery of grub-damaged turf
(32, 106). Fertilizing in autumn to promote root growth also enhances tolerance
(32). Raising cutting height to 18 cm, or spring application of aluminum sulfate to
acidify the soil, significantly reduced subsequent grub populations in tall fescue
(149). Applying dolomitic limestone to elevate soil pH, however, did not affect
ovipositional preference, survival of eggs or young larvae (186, 188, 189), or abun-
dance of JB grubs in turf (149, 186). Use of a heavy (2247 kg) roller on turf to com-
pact the soil before beetle flights also did not reduce subsequent grub populations,
nor was it effective for crushing third instars in autumn (149). Nitrogen fertilization
had no effect on density or mean weight of JB grubs in tall fescue (36, 149).

Smitley (167) found that JB larvae were fourfold more abundant in grassy areas
bordering nursery fields in Michigan and Ohio than in the fields themselves. Weedy
nursery fields supported tenfold more larvae than did clean fields. Nursery fields in
counties with the highest adult catches were most likely to have larval infestations.

Several studies have examined effects of previous cropping history, tillage, or
strip-cropping on abundance and movement of JB adults in row crops. In soybeans,
adults tended to be more abundant when corn, rather than soybeans, was the
previous crop, in no-till or reduced-till plots where broadleaf weeds provided
alternative food, and where a no-till rye cover crop was planted in fall (63, 165). In
contrast, abundance of JB was similar on monoculture corn versus strips of corn
alternated with soybean regardless of tillage regime (178). Lower densities were
found on soybeans that were strip-intercropped with dwarf or tall sorghum than in
soybean monocultures (72). Even though the dwarf sorghum was no taller than the
soybeans, the intervening strips of nonhost vegetation apparently discouraged the
beetles’ movement and dispersal (15, 72). These studies suggest that JB recognizes
and responds to sharp boundaries between host and nonhost patches irrespective
of whether they form a physical barrier.

Biological and Microbial Control

PREDATORS AND PARASITOIDS From 1920–1933, USDA entomologists imported
49 species of natural enemies ofP. japonicaand related scarabs from Asia and
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Australia and released them into the northeastern United States (44). Only a few
became established, the most widely distributed beingTiphia vernalis, a tiphiid
wasp that parasitizes overwintered grubs in the spring;Tiphia popilliavora, which
attacks young grubs in late summer; andIstocheta aldrichi, a tachinid fly that
parasitizes the newly emerged adults. These parasitoids occur sporadically and
they cannot be relied on for site-specific control. Although there has been little
subsequent research on their biology, recent studies withT. vernalisindicate that
its females use species-specific larval odor and frass to locate JB grubs in the soil
(M.E. Rogers & D.A. Potter, unpublished data).

Endemic, generalist predators, especially ants, staphylinids, and carabids, cause
substantial mortality of JB eggs and young larvae (118, 176, 199, 200). Moles,
skunks, and racoons prey on the grubs, but their foraging is often highly destructive
to turf (144). European starlings, crows, grackles, gulls, and other birds feed on the
grubs or adults (44). Free-range chickens kept in an apple orchard with intercropped
potatoes fed on several potential crop pests, including JB. Although JB were less
abundant on apple trees when chickens were present, the proportion of damaged
fruit was not reduced (24).

MILKY DISEASE BACTERIA Pathology ofPaenibacillus(formerly Bacillus) popil-
liaeandPaenibacillus lentimorbus, causal agents of milky disease in JB grubs, has
been extensively studied (82, 85). Grubs ingest spores of these bacteria along with
soil and roots. Once in the gut, the spores germinate and vegetative cells invade the
hemocoel, causing fat body depletion (164) and fatal bacteremia. Proliferation of
refractile spores and parasporal bodies during the final stage of infection gives the
hemolymph a milky-white color. Genetic relationships betweenP. popilliaeand
P. lentimorbushave long been debated, but DNA similarity analysis has validated
the existence of the two species (160). A new strain ofP. popilliaerecently was
isolated, the first report of natural incidence of milky disease in JB larvae in Japan
(127).

Following development of methods for in vivo production ofPaenibacillus
spores, an extensive program was conducted from 1939 to 1953 to disseminate
and establishP. popilliae in the eastern United States (44). Although this effort
was credited with helping to suppress JB populations in treated areas (44, 81),
low incidence of disease and upsurges in JB subsequently occurred. This raised
doubts about the persistence and possible loss of virulence ofP. popilliae in
the field (43, 64, 65, 81). Small-scale use of commercial spore dusts did not in-
crease milky disease incidence nor did it reduce localized grub infestations in
turf (152).

Lack of methods for in vitro sporulation has limited commercial production of
P. popilliae (81, 82). Products containing spores produced by a patented in vitro
process were marketed during the 1980s, but they were recalled following the
discovery that they contained only a different, noninfective bacterium (170). Re-
combinant DNA technology may yet provide strains ofP. popilliaewith enhanced
virulence or broader host range. Until then,P. popilliaeis probably best regarded
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as one of many factors that contribute to population suppression of JB, rather than
as an effective microbial insecticide (152).

BACILLUS THURINGIENSIS A novel isolate ofBacillus thuringiensis, designated
serovarjaponensisstrain Buibui (Btj), isolated from Japanese soils, is highly toxic
to JB larvae (139, 172). Delta-endotoxin proteins ofBtj have been purified and
characterized (73). Two formulations, one containing free protein toxin crystals
(parasporal inclusions) and live spores, and another containing the toxin expressed
in killed recombinantPseudomonas fluorescens, were effective in suppressing JB
grubs in turf plots (7). Commercial development, however, has been hindered by
formulation and marketing issues, especially competition from highly effective
synthetic insecticides.

NEMATODES The entomopathogenic nematodesSteinernema glaseriand Het-
erorhabditis bacteriophoracan be effective biological insecticides for controlling
JB grubs in turf (10, 42, 184, 198) or potted nursery stock (197). Implementation,
however, has been hindered by high cost, limited availability, short shelf-life, and
the inconsistent performance of commercial formulations (54, 83). Nematodes are
sensitive to heat, soil moisture, exposure to sunlight, and biotic factors that can
compromise their field efficacy (54, 55, 83). Some of their past inconsistency re-
sulted from improper use by applicators who failed to understand their limitations,
such as need for pre- and post-treatment irrigation (42). New nematode isolates may
prove to be more effective. For example,Steinernema kushidai, which is relatively
persistent and specific to scarab larvae, has given good control of JB grubs in turf
(90).

Entomopathogenic nematodes also occur naturally in the soil.Steinernema
glaseri, an unidentified mermithid, and a hindgut-inhabiting thelastomtid were
found infecting JB grubs in North Carolina (154). Campbell et al. (21, 22) com-
pared the temporal and spatial distributions of endemicH. bacteriophoraand JB
larval populations in turf fields. Although both species were patchily distributed,
JB grubs tended to be less abundant in samples where the nematode was recovered.
Infective juvenile nematodes can infect and be dispersed by JB adults (97), but the
value of this approach for large-scale augmentation or establishment of new foci
of infection is uncertain.

Being relatively sedentary, JB grubs are more vulnerable to nematodes that use
a cruise foraging strategy (e.g.,S. glaseri, H. bacteriophora) than to species such
asSteinernema carpocapsaethat use more stationary ambush foraging to infect
mobile hosts (60, 115, 117). Host-recognition cues used by JB-adapted nematodes
include CO2 (52), host volatiles (116), contact cues (115), host feces (59) and
host gut contents (58). Selection ofS. carpocapsaefor greater sensitivity to CO2
enhanced its ability to locate JB larvae (52).

JB grubs possess defense mechanisms against entomopathogenic nematodes.
These include grooming with the legs, mouthparts, and raster when nematodes are
present on the cuticle (53, 192), behavioral avoidance (53, 163), and high pH gut
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fluid that may also contain proteases (192). There may also be an immune response
involving melanotic encapsulation within the hemolymph (193). Sieve plates on
spiracles and a thick peritrophic membrane may act as morphological barriers to
nematode invasion (48).

Efficacy of nematodes for grub control may be enhanced by using them in
combination with other stressors such asBtj (88), milky disease (177), or certain
insecticides. For example,S. glaseriand H. bacteriophoracan synergistically
interact with imidacloprid, a chloronicotinyl insecticide, against JB grubs (87, 89).
Sluggishness of imidacloprid-intoxicated grubs facilitates host attachment and
subsequent penetration of infective juvenile nematodes. Grooming and evasive
behavior in response to nematode attack also were reduced in treated grubs (87).
In contrast, no interaction occurred when the nematodeHeterorhabditis marelatus,
which is highly infective to JB, was used in combination with a molt-accelerating
compound, halofenozide (126). Feeding on endophytic grasses also may increase
JB grubs’ vulnerability to nematodes (61).

OTHER ENTOMOPATHOGENS JB grubs are naturally infected by various microor-
ganisms other thanP. popilliaeor nematodes. Bacteria in the genusSerratiacol-
onize the gut, causing depletion of fat body, starvation, and development of an
amber color (44). Low incidence of infection by a blue iridovirus was found in the
Azores (94). Trophozoites and gamonts of a cephaline eugregarine were associated
with JB larvae in North Carolina (154).

Hanula & Andreadis (65) conducted an extensive survey of pathogens of JB
larvae in Connecticut.P. popilliae, P. lentimorbus, a rickettsia,Rickettsiella popil-
liae, and the fungusMetarhizium anisopliaeoccurred at low incidence. In contrast,
cephaline eugregarines were found in the guts of larvae from nearly every site.
Because they were ubiquitous, these protozoans are presumed not to be highly
pathogenic in host grubs. A microsporidian,Ovavesicula popilliae(12), also was
widespread, infecting 25% of the total JB larvae sampled, but as many as 80–90%
of the grubs from some locations. This organism infects the Malpighian tubules,
fat body, epidermis, and pericardial cells of larval and adult JB, as well as oeno-
cytes and tracheal epithelial cells of adults (66). It is transmitted horizontally and
appears to produce a chronic, debilitative disease. Infection byO. popilliaedid not
affect larval weight or development in the laboratory, but under field conditions,
emergence of infected adults was delayed. Fecundity of heavily infected females
was reduced by 50% (64).

Several species of fungi may infect JB larvae (65, 67, 76, 93, 182). Pathogenicity
of Metarhizium anisopliaeis affected by soil temperature and water content (93).
Adult JB are also susceptible toM. anisopliaeandBeauveria bassiana(96, 98).
Infected beetles do not die for several days, so there is potential for autodissem-
ination within populations (86, 96, 98). Villani et al. (182) showed that JB larvae
avoided soil that contained high concentrations ofMetarhiziumfor as long as 20
days after application. Conversely, incorporation of mycelial particles resulted in
increased oviposition (182). These variable responses to inundative applications
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of M. anisopliaehelp explain the erratic performance of fungi applied for control
of soil-inhabiting insects.

Plant-Derived Antifeedants

Metzger and Grant applied extracts of 390 JB-resistant plant species to apple
and peach leaves to test for protection from JB. Although a few extracts seemed
somewhat repellent, the tests were not extensive enough to be conclusive (47).
Feeding on sassafras was deterred by extracts of nonripe holly fruits (Ilex opaca),
which contain high levels of saponins (91). Extracts of neem seeds (Azadirachta
indica) containing the limonoid azadirachtin were strongly deterrent (108). Top-
ical application of such extracts was toxic to JB larvae, causing death and severe
deformity, or disrupting development to the adult stage (112). Although commer-
cial formulations deterred feeding by JB in laboratory choice tests (68, 71), weekly
applications of neem-based products did not adequately protect crabapple trees or
roses exposed to high JB populations in the field (68). Similarly, microencapsu-
lated pyrethrum derived fromTanacetum cinerariifoliumdid not reduce defoliation
of field-grown Himalayan birches, nor did commercial extracts of garlic (Allium
sativum), cayenne pepper (Capsicum anuum), or neem (195).

Insecticidal Control

INSECTICIDES AGAINST LARVAE JB grubs infesting lawns or golf courses typically
are controlled by applying a soil insecticide, followed by watering to leach the
residues into the root zone (144, 146). Short-residual organophosphates and carba-
mates were standards for grub control during the 1970s and 1980s. These products
work best when applied soon after egg hatch, but they also control second and
third instars after damage appears. Even when properly timed, they are variably
effective (e.g., 27, 185). Moreover, their use can be detrimental to nontarget or-
ganisms, including predators of JB eggs and larvae (118, 176, 200). Most of these
fast-acting, curative insecticides were restricted or canceled for turf usage during
the 1990s in response to environmental concerns and the 1996 Food Quality Pro-
tection Act. These restrictions, and the relative ineffectiveness or slower activity of
alternative products against third instars, has left the turf industry with few options
for remedial grub control.

Imidacloprid, a chloronicotinyl analog, and halofenozide, a bisacylhydrazine
ecdysteroid agonist that causes accelerated molting, were registered during the
1990s and became widely used for preventive control of scarabaeid grubs (144).
Because of their persistence, either product can be applied preventively, in spring or
early summer, to control grubs that eclose in July or August (144). Both compounds
are highly active against early-instar JBs (26, 28). Their broad application window
and low vertebrate toxicity make them attractive to the turf care industry. RH
5849, a diacylhydrazine ecdysone agonist that is closely related to halofenozide,
was previously tested against JB larvae (130). Symptoms of its toxicity included
weight loss, cessation of feeding, and induction of a developmentally premature,
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lethal molt. One-time feeding on treated foliage reduced subsequent egg production
by JB females (130).

Presence of JB grubs in balled and burlapped nursery stock, container-grown
plants, or in grass sod can result in rejection of such commodities for interstate
and international commerce (133). Immersion of root balls in chlorpyrifos can
control larvae in nursery stock, but the procedure is difficult, messy, and potentially
hazardous (125). It also may be phytotoxic to some tree species (125). Preplant
incorporation of bifenthrin or tefluthrin into potting media, or mid-summer drench
with imidacloprid, controlled grubs in nursery containers (137).

INSECTICIDES AGAINST ADULTS Adult JB traditionally have been controlled by
treating foliage or flowers of susceptible plants with short-residual insecticides,
especially carbaryl (144). Because this generally is effective, there has been little
motivation to develop alternative remedial controls. In California, however, area-
wide spray programs for JB precipitated secondary pest outbreaks on citrus trees
(37). Insecticidal soap kills adults that are hit by the spray, but it provides no
residual effectiveness (136). Horticultural oil was ineffective whether applied to
foliage or sprayed on the adults (136).

Regulatory Control

Although the federal Japanese beetle quarantine was rescinded in 1978, seven
western states and British Columbia maintain quarantines governing importation
of regulated commodities from JB-infested areas (13, 20, 133). These quarantines
prohibit entry of soil, humus, compost, or manure (except when commercially
packaged), grass sod, and nursery commodities unless they are free from soil that
could conceal any life stage of JB. Such materials may be approved for entry if
accompanied by either a Certificate of Treatment or Certificate of Origin issued by
an authorized state agricultural official. The former certifies that the plants were
treated for JB by approved methods prior to shipment. The latter certifies that they
were produced in an approved, JB-free greenhouse, or in counties of quarantined
states surveyed and free of JB, and transported in a manner that would prevent
them from becoming infested. The U.S. Domestic Japanese Beetle Harmonization
Plan outlines criteria for determining states’ infestation status, as well as guide-
lines for consistent and uniform implementation of regulatory control measures
(133).

The Animal and Plant Health Inspection Service (APHIS) also may regulate
airport facilities in quarantined states during the JB flight season (13). An inspector
may declare an airport to be regulated when he or she determines that adult JB
populations are present to the extent that departing aircraft constitute a threat to
spread the pest to protected states. West-bound aircraft, especially military and
commercial cargo carriers, may be required to be loaded while enclosed inside a
hangar, or at night. Aircraft opened and loaded during daylight may be subject to in-
spection, insecticide treatment, and safeguarding prior to departure. Requirements
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may vary among carriers at the same airport based on varying degrees of perceived
risk.

FUTURE DIRECTIONS FOR RESEARCH
AND MANAGEMENT

Despite many years of research on integrated control methods for the JB, landscape
managers, growers, and millions of homeowners still largely rely on insecticides
to manage the adult beetle and its grubs. As insecticide use on landscapes is
increasingly restricted and registrations of traditional products are lost, alternative
products will be needed. Antifeedants (e.g., azadirachtin) may help to fill this void,
but formulations marketed to date have been expensive and ineffective. Although
use of JB traps often is counterproductive, further testing may reveal spatial con-
figurations in which traps can help to reduce plant damage. Cultural controls that
could be deployed by home gardeners (e.g., trap cropping, companion planting,
repellent mulches) warrant study. For urban landscapes where potential hazards
and liability of spraying are concerns, alternative application methods (e.g., trunk
or soil injections) should be evaluated.

Cancellation of traditional soil insecticides has left the turf and nursery indus-
tries with few options for remedial control of JB grubs. Fast-acting, reduced-risk
products that can be used for spot or curative treatments are sorely needed. Without
this safety net, professionals and homeowners may increasingly favor preventive
treatments as insurance against grub damage. Being able to predict in which years,
and where, damaging grub infestations will occur would allow golf superinten-
dents, lawn care providers, and homeowners to be more selective with treatments.
Better understanding of the factors that drive annual and spatial variability of
JB populations may provide this capability. Entomopathogenic nematodes show
promise for grub control, but issues of cost, shelf-life, and reliability must still
be overcome. Microbial insecticides containingMetarhizium, Btj strain buibui, or
other pathogens warrant further study. Milky disease bacteria may also play a role
if their virulence can be genetically enhanced and in vitro production methods are
developed. The nursery industry needs better methods to ensure that nursery stock
shipped to western states is grub free.

Host plant resistance offers the greatest promise for low-input, sustainable
management of JB adults and grubs. Extension agents should convey informa-
tion on resistant plants to landscape architects, city foresters, and retail personnel
who advise homeowners on plant selection. Field-screening the diverse species
and cultivars of woody ornamentals that already are on the market will likely
reveal additional resistant ones, even within generally susceptible plant genera.
Research on host finding by adult JB, and on the plant factors that determine its di-
etary range, may facilitate the development of JB-resistant plants through conven-
tional propagation or transgenic plant technology. Although significant antibiosis
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or antixenosis of turfgrasses to JB grubs has not been found, such resistance
might be gained by transgenic expression of either bacterial toxins (e.g.,Btj strain
buibui), insecticidal plant proteins (51), or endophyte-associated alkaloids in grass
roots.

Conservation biological control of JB grubs also warrants study. Establishment
of Tiphia spp. or other introduced parasitoids might be enhanced by incorpo-
rating nectar-producing plants or honeydew sources into JB-infested landscapes.
Information on comparative toxicity of insecticides to endemic natural enemies
might encourage the use of least-disruptive compounds. Research on low-input,
sustainable lawn-care practices that may help to suppress JB grub populations is
needed.

As the JB spreads into new regions, it has the potential to disrupt indigenous
ecosystems, including native herbivores and plant species. For example, its flower-
feeding habits might compromise the reproduction of threatened or endangered
plants. Another key question concerns the observation that JB often exhibits widely
fluctuating populations over time. Do epizootics of pathogens such asOvavesicula
popilliae regulate populations of JB, or are environmental factors (e.g., rainfall)
more responsible for cycles of outbreak and decline?

Finally, we suggest that analyses (e.g., 4, 46) that have projected the JB’s prob-
able ultimate spread in North America and elsewhere in the world may be overly
conservative. Such models match the pest’s temperature and soil moisture re-
quirements with seasonal rainfall and other regional climatic factors. They do not
take into account the expanses of irrigated turf and crop lands that now char-
acterize many of the semiarid regions of United States that formerly were too
dry to be suitable for the JB. This patchwork of suburban, grassy oases and ir-
rigated agricultural lands may facilitate the JB’s spread into Nebraska, Kansas,
Oklahoma, Texas, and irrigated areas of the Great Basin; such spread has already
occurred in parts of Japan (11). In southern and central California, extensive ir-
rigation makes large areas vulnerable to the JB’s establishment, and the climate
of western Oregon, Washington, and southwestern British Columbia also is suit-
able (4, 46). Establishment of the JB in the Azores and the finding of beetles in
aircraft arriving from the eastern United States in western states, Bermuda, and
Europe (13) show its capacity to invade new areas. Refinement of quarantine, erad-
ication, and management methods will help limit the JB’s impact as an invasive
species.
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