Part A: Serial Correlation

1. OLS results for the beef demand equation.

$$
\begin{aligned}
& y_{t}=6.4612-0.2712 \mathrm{x}_{1 \mathrm{t}}+0.9957 \mathrm{x}_{2 \mathrm{t}}-0.4063 \mathrm{x}_{3 \mathrm{t}}-0.4237 \mathrm{x}_{4 \mathrm{t}}+\mathrm{e}_{\mathrm{t}} \\
& \begin{array}{llllll}
\text { se } & (1.4199) & (0.1261) & (0.1621) & (0.1446) & (0.1124) \\
p & (0.0001) & (0.0357) & (0.0001) & (0.0067) & (0.0004)
\end{array} \\
& R^{2}=0.6859 \quad \mathrm{~F}_{4,58}=31.66 \quad \mathrm{P} \text {-Value }=0.0001 \quad \sigma=0.0834
\end{aligned}
$$

2. $D W-d=0.683$ where $N=63$ and $k^{\prime}=4$
$d_{1}=1.444$ and $d_{u}=1.727 \quad\left(N=60, k^{\prime}=4\right.$, and $\left.\alpha=5 \%\right)$
$d_{1}=1.471$ and $d_{u}=1.731 \quad\left(N=65, k^{\prime}=4\right.$, and $\left.\alpha=5 \%\right)$
Reject the null hypothesis of no first order serial correlation. There is evidence of significant positive serial correlation.
3. $\mathrm{BG}=(63-2) \times 0.5214=31.8054>5.991=\chi^{2} \quad(\mathrm{df}=2 \quad \alpha=5 \%)$
and $F_{2,54}=26.18(p-v a l u e=0.0001)$.
Significant first order but not second order autocorrelation.
4. EGLS Results.
$y_{t}=4.2564-0.4027 \mathrm{x}_{1 \mathrm{t}}+0.0946 \mathrm{x}_{2 \mathrm{t}}-0.0318 \mathrm{x}_{3 \mathrm{t}}+0.2010 \mathrm{x}_{4 \mathrm{t}}+\mathrm{e}_{\mathrm{t}}$

(1.2074)	(0.0740)	(0.0565)	(0.0557)	(0.1153)
(0.0008)	(0.0001)	(0.0994)	(0.5707)	(0.0865)

$e_{t}=0.9856 e_{t-1}+u_{t}$
(0.0224)
(0.0001)
$\mathrm{F}_{4,57}=9.01 \quad \mathrm{P}$-Value $=0.0001$ Total $\mathrm{R}^{2}=0.9693 \quad \sigma=0.0263$
Regression $R^{2}=0.3873$
5. Coefficients are supposed to not change much and standard errors are supposed to be larger (relative to the beta) - most p-values less significant. F-statistic smaller, R^{2} larger, and root error variance smaller. Economic conclusions more reasonable?
6. $y_{t}=\beta_{0}+\Sigma \beta_{i} x_{i t}+e_{t}$ and $e_{t}=\rho e_{t-1}+u_{t}$

$$
y_{t}=\beta_{0}+\Sigma \beta_{i} x_{i t}+\rho e_{t-1}+u_{t}
$$

$$
E\left(y_{t}\right)=\beta_{0}+\Sigma \beta_{i} x_{i t}+\rho e_{t-1}
$$

$\mathrm{E}\left(\mathrm{y}_{2010}\right)=\beta_{0}+\Sigma \beta_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} 2010+\rho \mathrm{e}_{2009}$
$\mathrm{E}\left(\mathrm{y}_{2010}\right)=4.2564-0.4027 \ln (432.7)+0.0946 \ln (307.3)-0.0318 \ln (124.7)$
$+0.2010 \ln (36180)+0.9856(-0.026102)=4.31038 \rightarrow \mathrm{PCQ}=61.4588$ \#/cap
7. OLS Structural Change. $F_{5,53}=24.73$ p-value $=0.0001$ Reject.

EGLS Structural Change. $\mathrm{F}_{5,52}=3.58$ p-value $=0.0074$ Reject.
(If using $P-W$ the df2 is 53.) Correcting the serial correlation makes the F-test for structural change smaller. But structural change is still present.
8. OLS

$$
\begin{aligned}
& R^{2}=0.9209 \quad F_{7,55}=91.47 \quad \text { P-Value }=0.0001 \quad D W-d=0.629 \\
& H_{0}: \beta_{5}=\beta_{6}=\beta_{7}=0 . \quad F_{3,55}=54.47 \quad P \text {-Value }=0.0001 \quad \text { Reject. }
\end{aligned}
$$

EGLS
$y_{t}=2.4685-0.4307 x_{1 t}+0.0770 x_{2 t}-0.0565 x_{3 t}+0.4433 x_{4 t}$

(1.2288)	(0.0603)	(0.0458)	(0.0472)	(0.1328)
(0.0496)	(0.0001)	(0.0986)	(0.2364)	(0.0015)

$+0.0249 t-0.001527 t^{2}+0.0000158 t^{3}+e_{t}$
$(0.0085) \quad(0.000275) \quad(0.000003)$ (0.0050) (0.0001) (0.0001)
$e_{t}=0.9321 e_{t-1}+u_{t}$
(0.0493)
(0.0001)

Total $\mathrm{R}^{2}=0.9822 \quad \mathrm{~F}_{7,54}=15.16 \quad$ P-Value $=0.0001 \quad \sigma=0.0206$

$$
\text { Regression } R^{2}=0.6628
$$

$H_{0}: \beta_{5}=\beta_{6}=\beta_{7}=0 . \quad F_{3,54}=19.48 \quad$ P-Value $=0.0001 \quad$ Reject.
Trend variables are useful but vague.
9. Elasticity Table

	OLS	EGLS	OLS w/ t	EGLS w/ t
Beef	$\begin{aligned} & -0.2712 \\ & (0.1261) \end{aligned}$	$\begin{aligned} & -0.4027 \\ & (0.0740) \end{aligned}$	$\begin{aligned} & -0.1706 \\ & (0.0821) \end{aligned}$	$\begin{aligned} & -0.4307 \\ & (0.0603) \end{aligned}$
Pork	$\begin{aligned} & +0.9957 \\ & (0.1621) \end{aligned}$	$\begin{aligned} & +0.0946 \\ & (0.0565) \end{aligned}$	$\begin{aligned} & +0.2458 \\ & (0.1123) \end{aligned}$	$\begin{aligned} & +0.0770 \\ & (0.0458) \end{aligned}$
Chicken	$\begin{aligned} & -0.4063 \\ & (0.1446) \end{aligned}$	$\begin{aligned} & -0.0318 \\ & (0.0557) \end{aligned}$	$\begin{aligned} & -0.1099 \\ & (0.1125) \end{aligned}$	$\begin{aligned} & -0.0565 \\ & (0.0472) \end{aligned}$
Income	$\begin{aligned} & -0.4237 \\ & (0.1124) \end{aligned}$	$\begin{aligned} & +0.2010 \\ & (0.1153) \end{aligned}$	$\begin{aligned} & +0.9562 \\ & (0.1878) \end{aligned}$	$\begin{aligned} & +0.4433 \\ & (0.1328) \end{aligned}$
Rho		$\begin{gathered} 0.9856 \\ (0.0224) \end{gathered}$		$\begin{gathered} 0.9321 \\ (0.0511) \end{gathered}$

Which is the better model?

Trend and serial correlation are measuring something similar. Without the trend variables, the model appears to be misspecified.

Elasticities more reasonable in trend model. But what is the trend variable measuring?
(When trends and dummies are used together, and serial correlation is corrected for, then it is the trend that wins. The own-price elasticity become more inelastic.)

Part B: Heteroskedasticity
0. Summary statistics and correlation coefficients.

Name	N	Mean	Std Dev	Min	Max
exp	72	262.53	318.05	9.58	1898.03
age	72	31.437	7.1527	20.00	55.00
rnt	72	0.3750	0.4875	0.0	1.0
inc	72	3.4371	1.6995	1.5	55.0
d	72	0.5139	0.5033	0.0	1.0

1. OLS Results.
$\exp _{i}=-237.1-3.0818$ age $_{i}+27.94$ rnt $_{i}+234.3$ inci $_{i}-14.9968$ inc $_{i}+e_{i}$

(199.3)	(5.5147)	(82.92)	(80.37)	(7.4693)
(0.2384)	(0.5781)	(0.7372)	(0.0048)	(0.0487)

$\mathrm{F}_{4,67}=5.39 \quad \mathrm{P}$-Value $=0.0008 \quad \mathrm{R}^{2}=0.2436 \quad \sigma=284.7508$
2. Error variance does not appear to be constant. The error variance is higher with higher income and maybe with age.
3. Park Test
$\ln \left(e_{t}{ }^{2}\right)=2.9+0.0617 a g e_{i}-0.2455 r n t_{i}+2.2417 i n c_{i}-0.2272$ inc $^{2}{ }_{i}+e_{i}$
(1.3612) (0.0377) (0.5662) (0.0510)
(0.0381) (0.1061) (0.6660) (0.0001)
$\mathrm{F}_{4,67}=6.77 \mathrm{P}$-Value $=0.0001 \quad \mathrm{R}^{2}=0.2877 \quad \sigma=1.9443$
Park: F-test $=6.77>F_{4,67}(5 \%) . \quad$ P-value $=0.0001$. Reject.
Park for specific forms:
Income and squared: F-test $=12.07$ (0.0001) Reject. Income only: t-test $=0.21$ (0.8354) Fail to reject.

Goldfeld-Quandt: (RSS and no dropped center obs so df1=31 df2=31) F-test $=4894130 / 326247=15.00>1.90=F_{31,31}(5 \%)$. (dummy variable) t-test $=2.33 \mathrm{p}$-value $=0.0226$.
$\mathrm{BP}:(98.8539) / 2=49.4270>9.48773=\chi^{2}{ }_{4}(5 \%)$.

White: (72) $\times 0.1540=11.088<16.9190=\chi^{2}{ }_{9}(5 \%)$.
White: (72) $\times 0.1990=14.328<21.0261=\chi^{2}{ }_{12}(5 \%)$.
So heteroskedasticity is there but... and it's related to...
4. White Results.


```
\begin{tabular}{rrrrr}
\((213.0)\) & \((3.3017)\) & \((92.19)\) & \((88.87)\) & \((6.9446)\) \\
\((0.2655)\) & \((0.3506)\) & \((0.7618)\) & \((0.0084)\) & \((0.0308)\)
\end{tabular}
```

5. Weighted Least Squares - divide each variable by 1/inc.
```
expi/inci
            (139.5) (3.8073) (58.55)
            (0.4169)
                                    (0.4816)
                                    (0.3056)
            + 158.43 - 7.2493 inci}+\mp@subsup{e}{i}{
            (76.39) (9.7243)
            (0.0419) (0.4586)
```



```
or report as
```



```
    (139.5) (3.8073) (58.55) (76.39) (9.7243)
    (0.4169) (0.4816) (0.3056) (0.0419) (0.4586)
```



```
Coefficients change. Standard errors larger and p-values less
significant. F-statistic smaller, R}\mp@subsup{}{}{2}\mathrm{ smaller, and root error variance
different.
```

6. Maximum Likelihood

```
\begin{tabular}{rrrrr}
\((283.6)\) & \((2.7728)\) & \((36.64)\) & \((165.1)\) & \((4.8148)\) \\
\((0.8594)\) & \((0.2035)\) & \((0.0099)\) & \((0.7310)\) & \((0.8596)\)
\end{tabular}
\sigma}\mp@subsup{}{i}{}=\operatorname{exp}(64.4122+0.3688 incici+1.8857 D D )
            (20.05) (0.2527) (0.6045)
                (0.0013)(0.1445) (0.0018)
\chi}\mp@subsup{2}{2}{\prime}=36.1953 P-Value = 0.0001 R R = 0.1269
```

(Not with income but a jump...)

```
Two-Step Process
```



```
            (170.7)
    F
```



```
        (0.5822) (0.2011) (0.6791)
        (0.0001) (0.0683) (0.0037)
    F2,69 = 4.53 P-Value = 0.0142 R R = 0.116 \sigma = 2.1343
    Error variance jump versus gradual change?
(A jump and maybe declining with income...)
7. Changes in coefficients and changes in significance between OLS and models which correct for heteroskedasticity. Changes again between weighted least squares and maximum likelihood models. Fits are very similar.
```

