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A TEST OF THE TOBIT SPECIFICATION AGAINST AN ALTERNATIVE
SUGGESTED BY CRAGG

Tsai-Fen Lin and Peter Schmidt*

Abstract—In this paper we present a specification test for the
Tobit model. Specifically, we test the Tobit model against the
alternative of a two-part model in which one set of parameters
determines the probability of a limit observation while a second
set of parameters determines the distribution of the non-limit
observations. An advantage of our test is that it is easily
calculated from the Tobit residuals.

I. Introduction

The Tobit model proposed by Tobin (1958) has been
widely used in empirical work for some time, but only
recently has much attention been paid to testing the
specification of the model (for example, see Nelson
(1981), Lee (1981), Ruud (1982) and Olsen (1980)).
Nelson’s test is a general specification test which com-
pares restricted and unrestricted estimates of various
moments of the dependent variable; it is not directed at
any specific alternative. The same is true of Olsen’s
suggestion (p. 1101) to compare actual and predicted
numbers of limit observations, and of Ruud’s suggestion
to test the significance of the difference between the
Tobit and Probit estimates. Lee’s test is, on the other
hand, a test of normality against the alternative of a
more general member of the Pearson family.

In this paper we propose a test of the Tobit model
against an alternative specification due to Cragg (1971).
Cragg’s model allows one set of parameters to de-
termine the probability of a limit observation, and a
second set of parameters to determine the density of the
non-limit observations. The Tobit model is the special
case in which the same set of parameters does both.
Cragg’s model is in some cases a natural alternative to
the Tobit model. We suggest using the Lagrange multi-
plier (LM) test, which is a reasonable test in this case
since it is based on the results of estimating the re-
stricted (Tobit) model only, whereas one would have to
estimate Cragg’s model to perform the Wald or likeli-
hood ratio test.

II. Cragg’s Model

The model we consider as an alternative to the Tobit
model is the model given by equations (7) and (9) of
Cragg (1971, p. 831). The model basically assumes two
things. First the probability of a limit observation (a
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zero) is given by a probit model with parameter vector
B,. That is,

P(y =0)=2(-Xxp), (1)

where y, is the dependent variable, X, is a row vector of
K explanatory variables, B, is a column vector of K
parameters, and @ is the standard normal cumulative
distribution function (cdf). Here ¢t = 1,2,..., T indexes
observations. Second, it is assumed that the density of
Yi» conditional on being a non-limit (positive) observa-
tion, is that of N(X,8,, 6?), truncated at zero. Thus,

1 1
f(yl|.yl> O) = ‘I’(X,Bz/a) o

XeXP{i-lg(y, - X,Bz)z}- (2)

If we define the indicator function I, =1 if y, > 0,
I, = 0 if y, = 0, we obtain the log likelihood function

o3

t=1

-In®(X,B,/0) —1/21In(270?)

[a-ryme(-xp) L[lm(x,m)

- - X,ﬁz)z]}~ (3)

This model contains the usual Tobit model as the
special case corresponding to B, = 8,/0. In that case
(3) is easily seen to reduce to the usual Tobit log
likelihood.

An alternative to the Tobit model is often well worth
considering because the Tobit model is very restrictive.
For one thing, in the Tobit model any variable which
increases the probability of a non-zero value must also
increase the mean of the positive values; a positive
element of B means that an increase in the correspond-
ing variable (element of X,) increases both P(y, > 0)
and E(y,|y, > 0). This is not always reasonable. As an
example, consider a hypothetical sample of buildings,
and suppose that we wish to analyze the dependent
variable “loss due to fire,” during some time period.
Since this is often zero but otherwise positive, the Tobit
model might be an obvious choice. However, it is not
hard to imagine that newer (and more valuable) build-
ings might be less likely to have fires, but might have
greater average losses when a fire did occur. The Tobit
model can not accommodate this possibility.

Another problem with the Tobit model is that it links
the shape of the distribution of the positive observations
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and the probability of a positive observation. For rare
events (like fires), the shape of the distribution of the
positive observations would have to resemble the ex-
treme upper tail of a normal, which would imply a
continuous and faster than exponential decline in den-
sity as one moved away from zero. Conversely, when
zero occurs less than half of the time, the Tobit model
necessarily implies a non-zero mode for the non-zero
observations.

Cragg’s model avoids both of the above problems
with the Tobit model. A reasonably strong case can be
made for it as a general alternative to the Tobit model,
for analysis of data sets to which Tobit is typically
applied—namely, data sets in which zero is a common
(and meaningful) value of the dependent variable, and
the non-zero observations are all positive. The distribu-
tion of such a dependent variable is characterized by the
probability that it equals zero and by the (conditional)
distribution of the positive observations, both of which
Cragg’s model parameterizes in a general way.

Of course, there are other existing models which
contain the Tobit model as a (testable) special case, but
these models are not entirely suitable for application to
data sets with the above characteristics. For example,
consider the sample selection model of Heckman (1976,
1979), which we write as

Yo = XBy +uy
Vo= XBy+ upy.

Here we observe only the sign of y,,, and we observe y,
if and only if y,, > 0.! This collapses to the Tobit model
if B, = B, and u,, = u,,. However, except in this special
case the model does not apply well to data sets with the
characteristics listed above: the observed values of y,
need not be positive, in the sense that the model implies
a non-zero probability of observed y, < 0; and the
unobserved y,, are literally unobserved, rather than ob-
served as equal to zero. The first of these problems can
be circumvented, for example, by measuring y,, in loga-
rithms, but then the model no longer includes the Tobit
model as a special case, and the second problem is in
any case fundamental. To return to the example of fire
losses, Heckman’s model applies when for some build-
ings fire losses are literally unknown, while the Tobit
model or Cragg’s model applies when for some build-
ings losses are known to equal zero.

Similar comments apply to the models of Heckman
(1978) and Lee (1979). We will discuss only the latter
model because it includes the former as a special case.
Here there are two separate regimes, plus an equation
that determines which regime is observed. If the depen-

! The ordering of the equations is chosen to conform to the
previously used notation for Cragg's model, and is the reverse
of Heckman’s ordering. Obviously this is not a matter of
substance.
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dent variable in one of the regimes is defined to be
identically zero, we have a generalization of the Tobit
model; the model reduces to the Tobit model when the
regime-switching equation is restricted to be the same as
the equation for the non-trivial regime. However, except
in this restricted case, nothing in the model guarantees
that observations in the non-trivial regime be positive
with probability one. As above, this problem can be
circumvented, for example, by measuring the dependent
variable in logarithms. In this case the resulting model is
very similar in spirit to Cragg’s model,® but it no longer
contains the Tobit model as a special case.

III. Derivation of the LM Test

A test of the Tobit specification against Cragg’s alter-
native is a test of the restriction 8, = B,/0 in Cragg’s
model. The LM test is the natural test to use in this
case, since it will be based on the Tobit estimates only;
it does not require estimation of Cragg’s model.

Let @ be the vector of parameters of the model, and
let § be the maximum likelihood estimates (MLEs)
subject to the restriction being tested. Then the LM test
statistic is of the form

LM =D(8)[#(8)] 'D(8), (4)

where D(f) is the first partial of the log likelihood,
evaluated at 8, and #(0) is the information matrix, also
evaluated at 8. The test statistic is asymptotically dis-
tributed as x% (K being the number of explanatory
variables), under the null hypothesis that the Tobit
model is correct. (See, e.g., Breusch and Pagan (1980)
for more details on the general case.)

To derive the test statistic, it is convenient to re-
parameterize in a way similar to that suggested by Olsen
(1978). Thus we let

0= (§,.B" h) (5)
where

B=R8,/0

§=B8-B=8—B/c

h=1/. (6)

We then wish to test H: § = 0. Note that given H, the
restricted MLEs are

g7 =[0.p",h] (7)

where B and h are the Tobit estimates. Also, all ele-
ments of D(6) will equal zero except for the first K,
which correspond to dL/3§ (with § = 0); see Breusch
and Pagan (1980).

2 The difference is only whether one assumes the conditional
distribution of the positive observations to be truncated nor-
mal, or the unconditional distribution to be lognormal.
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If we reparameterize the likelihood (3) in accordance
with (6), differentiate with respect to §, and then evaluate
at 6, we obtain

‘;g =Y [Im(XB) (1 - L)m(-XB)]X, (8)

where m(-) = ¢(-)/®(-), ¢ and P being, respectively,
the standard normal density and cdf. However, the
Tobit first order conditions imply

Z(l - I,)m(—X,[i)X,’ = er(i’yr - XIB)XI/ (9)

and thus we obtain

dL

E]
This expression (10) gives the first K elements of D(f);
as noted above, the last K + 1 elements of D(f) equal
zero.

Incidentally, (10) is interpretable as a vector of cross
products between the explanatory variables and the
Tobit “residuals” for the non-limit observations. This is
so in the sense that

E[(hy, = XB)|y, > 0] = m(X,B) (11)

and thus the term in brackets in (10) can be regarded as
the Tobit “residual.”

The information matrix evaluated at 8, #(§), takes
the form’

T
= ZI,[m(X,ﬁ)—(ily,— XIB)]XI/' (10)
t=1

S T S
s(0)=| T8y T T
Fry Fnp Fan
i Xt)a,x, X, XI:a,X,’X, 0
_ ;(a,+b,)X,'X, ;C,X/
Yd,
| :

(12)

3 The information matrix is calculated as the expected value
of the matrix of second partials of the log likelihood with
respect to the parameters. Evaluation of these expected values
requires the facts:

E(1)=®[X,(8+8)]
E(Ly?) =h'[XB+m(X.B)]2[X,(B +§)]
E(Ly')=h o[ X(B+9)]
x [1+(XBym(x.8) +(x.8)].

The first of these is trivial, while the last two follow directly
from standard formulae for the moments of a truncated normal
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where a,, b, ¢, and d, are defined by
ar=m(_X/B)m(X1[;) 3
b= ®(XA)[1 - XBm(XB) - m*(Xp)]
o= z0(XB)[ XA + m(XB)]

4= 02+ (XB) +(XB)m(X)].

(13)
Given the form of D(), we require for LM only the
upper left K X K submatrix of [£(6)]!, say #%.
Using the partitioned inverse rule and some algebra
yields

-1
% = [Zaxx]
t
1

+[;b,X,’X, —(XI:C,AC)/(Z':C,X,)/;d,] :

(14)
Finally, then, the LM statistic is
LM = (25) J§§'(£~£), (15)
8 78

where dL/3§ is given by (10) and £ is given by (14).
Although #% has no obvious interpretation, it is easily
calculated from one’s Tobit results. On the other hand,
dL/d§ is both easily calculated, and also easily inter-
preted, as the vector of cross-products of the explana-
tory variables with the Tobit “residuals.”

IV. Concluding Remarks

Our LM test is a relatively simple test of the hypothe-
sis that the Tobit model is correctly specified, against
the alternative that different sets of parameters de-
termine the probability of a limit observation and the
density of the non-limit observations. Its chief ad-
vantage is that it can be performed from the results of
estimating the Tobit model. This avoids estimation of
the more complicated alternative model of Cragg, at
least in cases in which the Tobit model is not rejected.

While Cragg’s model is more complicated to estimate
than the Tobit model, we should not overstate the
difficulty involved in estimating it. The main difficulty is
probably the lack of readily available software, whereas
programs for Tobit estimation are widespread. In our
opinion, the Tobit model is typically used with more
faith than it warrants, but this is of course an empirical
question, upon which this test (and the other specifica-
tion tests listed in section I) should shed some light. If

variable; see, e.g., Johnson and Kotz (1970, pp. 81-83). The
information matrix is then evaluated at 3, &, and § (where of
course § = 0).
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the Tobit model fails to do well when confronted with
such tests, Cragg’s model (or other possible generaliza-
tions of Tobit) should see more use.

Finally, it should be emphasized that while our test is
a test against the alternative of Cragg’s model, it will
likely show some power against a variety of possible
misspecifications of Tobit. Thus a rejection of Tobit by
this test need not imply that Cragg’s model is indicated
by the data. However, as we have argued in section II,
Cragg’s model is a very plausible alternative to Tobit in
many cases, and thus may be an obvious candidate to
consider if Tobit is rejected. The most important restric-
tive assumption remaining in Cragg’s model is probably
that (like Tobit) it assumes normality. Thus it is pre-
sumably worthwhile to extend the recent work on (dis-
tributionally) robust versions of Tobit and the sample
selection model to Cragg’s model as well.
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DUMMY VARIABLES: MECHANICS V. INTERPRETATION

Daniel B. Suits*

Abstract—Regressions containing dummy variables are easily
estimated by the familiar expedient of “dropping out” one of
the categories but the result is often awkward to interpret.
Since coefficients of dummy variables are determined only up
to an additive constant, however, the equation can be trans-
formed into a more easily interpretable form by adding on an
appropriately chosen constant to each coefficient.

For most regressions the constants should be chosen to force
the mean of the transformed coefficients to equal 0. For loga-
rithmic regressions the constants should be chosen to force the
sum of the antilogs of the coefficients to equal 1. With logarith-
mic demand curves fitted to monthly data the resulting antilogs
become monthly seasonal indexes.

The technical procedure by which dummy variables
are used to capture the influence of categorical variables
in regression equations is generally familiar (see Gold-
berger (1964), Kmenta (1971), Johnston (1960), or, to go
back near the beginning of things, Suits (1957)). In
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many cases, particularly where only two classes of ob-
servation are involved, results presented in the usual
way involve no special problems of interpretation. For
example, use of a dummy variable to distinguish pre-war
from post-war behavior, or to measure the shift in a
relationship during the period of a strike is readily
understood by any reader. But where a set of several
dummy variables is employed to measure the variation
in behavior among a number of classes—regions, edu-
cation groups, age brackets, and the like—there is often
an important difference between the purely mechanical
problem of fitting the regression and the quite different
problem of presenting the results in the most effective
fashion. The purpose of this paper is to call attention to
this distinction, and to illustrate by simple examples.

Regional Variation

To examine the variation of household expenditure
for gasoline with income and region of residence, a
least-squares regression is fitted with the result (figures



